v/vlib/v/gen/c/fn.v
2025-09-02 18:48:51 +03:00

2921 lines
90 KiB
V

// Copyright (c) 2019-2024 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module c
import strings
import v.ast
import v.util
const c_fn_name_escape_seq = ['[', '_T_', ']', '']
fn (mut g Gen) is_used_by_main(node ast.FnDecl) bool {
$if trace_unused_by_main ? {
defer {
used_by_main := $res()
if !used_by_main {
fkey := node.fkey()
println('> trace_unused_by_main: mod: ${node.mod} | ${node.name} | fkey: ${fkey} | line_nr: ${node.pos.line_nr}')
}
}
}
if node.is_c_extern {
return true
}
mut is_used_by_main := true
if g.pref.skip_unused {
if node.is_markused {
// TODO for some reason markused walker doesn't set used_fns[key] true for
// [markused] fndecls
return true
}
fkey := node.fkey()
is_used_by_main = g.table.used_features.used_fns[fkey]
$if trace_skip_unused_fns ? {
println('> is_used_by_main: ${is_used_by_main} | node.name: ${node.name} | fkey: ${fkey} | node.is_method: ${node.is_method}')
}
if !is_used_by_main {
$if trace_skip_unused_fns_in_c_code ? {
g.writeln('// trace_skip_unused_fns_in_c_code, ${node.name}, fkey: ${fkey}')
}
}
} else {
$if trace_skip_unused_fns_in_c_code ? {
g.writeln('// trace_skip_unused_fns_in_c_code, ${node.name}, fkey: ${node.fkey()}')
}
}
return is_used_by_main
}
fn (mut g Gen) fn_decl(node ast.FnDecl) {
if node.should_be_skipped {
return
}
if node.is_test {
g.test_function_names << node.name
}
if node.ninstances == 0 && node.generic_names.len > 0 {
$if trace_generics ? {
eprintln('skipping generic fn with no concrete instances: ${node.mod} ${node.name}')
}
return
}
if !g.is_used_by_main(node) {
return
}
if g.is_builtin_mod && g.pref.gc_mode == .boehm_leak && node.name == 'malloc' {
g.definitions.write_string('#define _v_malloc GC_MALLOC\n')
return
}
if g.pref.parallel_cc {
if node.is_anon {
// g.write('static ')
// g.definitions.write_string('static ')
}
if !node.is_anon {
g.out_fn_start_pos << g.out.len
}
}
prev_is_direct_array_access := g.is_direct_array_access
g.is_direct_array_access = node.is_direct_arr || g.pref.no_bounds_checking
defer {
g.is_direct_array_access = prev_is_direct_array_access
}
// handle `@[c_extern] fn C.some_name() int` declarations:
old_inside_c_extern := g.inside_c_extern
defer {
g.inside_c_extern = old_inside_c_extern
}
if node.language == .c && node.is_c_extern {
g.inside_c_extern = true
}
g.gen_attrs(node.attrs)
mut skip := false
pos := g.out.len
should_bundle_module := util.should_bundle_module(node.mod)
if g.pref.build_mode == .build_module {
// TODO: true for not just "builtin"
// TODO: clean this up
mod := if g.is_builtin_mod { 'builtin' } else { node.name.all_before_last('.') }
// for now dont skip generic functions as they are being marked as static
// when -usecache is enabled, until a better solution is implemented.
if ((mod != g.module_built && node.mod != g.module_built.after('/'))
|| should_bundle_module) && node.generic_names.len == 0 {
// Skip functions that don't have to be generated for this module.
// println('skip bm $node.name mod=$node.mod module_built=$g.module_built')
skip = true
}
if g.is_builtin_mod && g.module_built == 'builtin' && node.mod == 'builtin' {
skip = false
}
if !skip && g.pref.is_verbose {
println('build module `${g.module_built}` fn `${node.name}`')
}
}
if g.pref.use_cache {
// We are using prebuilt modules, we do not need to generate
// their functions in main.c.
if node.mod != 'main' && node.mod != 'help' && !should_bundle_module && !g.pref.is_test
&& node.generic_names.len == 0 {
skip = true
}
}
keep_fn_decl := g.fn_decl
unsafe {
g.fn_decl = &node
}
if node.is_main {
g.has_main = true
}
// TODO: PERF remove this from here
is_backtrace := node.name.starts_with('backtrace')
&& node.name in ['backtrace_symbols', 'backtrace', 'backtrace_symbols_fd']
if is_backtrace {
g.write('\n#ifndef __cplusplus\n')
}
g.gen_fn_decl(node, skip)
if is_backtrace {
g.write('\n#endif\n')
}
g.fn_decl = keep_fn_decl
if skip {
g.go_back_to(pos)
}
if !g.pref.skip_unused {
if node.language != .c {
g.writeln('')
}
}
// Write the next function into another parallel C file
// g.out_idx++
// if g.out_idx >= g.out_parallel.len {
// g.out_idx = 0
//}
}
fn (mut g Gen) gen_fn_decl(node &ast.FnDecl, skip bool) {
// TODO: For some reason, build fails with autofree with this line
// as it's only informative, comment it for now
// g.gen_attrs(it.attrs)
if node.language == .c {
if !g.inside_c_extern {
return
}
}
old_is_vlines_enabled := g.is_vlines_enabled
g.is_vlines_enabled = true
defer {
g.is_vlines_enabled = old_is_vlines_enabled
}
tmp_defer_vars := g.defer_vars // must be here because of workflow
if !g.anon_fn {
g.defer_vars = []string{}
} else {
if node.defer_stmts.len > 0 {
g.defer_vars = []string{}
defer {
g.defer_vars = tmp_defer_vars
}
}
}
// Skip [if xxx] if xxx is not defined
/*
for attr in node.attrs {
if !attr.is_comptime_define {
continue
}
if attr.name !in g.pref.compile_defines_all {
// println('skipping [if]')
return
}
}
*/
g.returned_var_names.clear()
old_g_autofree := g.is_autofree
if node.is_manualfree {
g.is_autofree = false
}
defer {
g.is_autofree = old_g_autofree
}
if node.generic_names.len > 0 && g.cur_concrete_types.len == 0 {
// need the cur_concrete_type check to avoid inf. recursion
// loop thru each generic type and generate a function
nkey := node.fkey()
generic_types_by_fn := g.table.fn_generic_types[nkey]
$if trace_post_process_generic_fns ? {
eprintln('>> gen_fn_decl, nkey: ${nkey} | generic_types_by_fn: ${generic_types_by_fn}')
}
for concrete_types in generic_types_by_fn {
if g.pref.is_verbose {
syms := concrete_types.map(g.table.sym(it))
the_type := syms.map(it.name).join(', ')
println('gen fn `${node.name}` for type `${the_type}`')
}
if concrete_types.any(it.has_flag(.generic)) {
continue
}
g.cur_concrete_types = concrete_types
g.gen_fn_decl(node, skip)
}
g.cur_concrete_types = []
return
}
cur_fn_save := g.cur_fn
defer {
g.cur_fn = cur_fn_save
}
unsafe {
// TODO: remove unsafe
g.cur_fn = node
}
fn_start_pos := g.out.len
is_closure := node.scope.has_inherited_vars()
mut cur_closure_ctx := ''
if is_closure {
cur_closure_ctx = g.closure_ctx(node)
// declare the struct before its implementation
g.definitions.write_string(cur_closure_ctx)
g.definitions.writeln(';')
}
g.write_v_source_line_info_stmt(node)
fn_attrs := g.write_fn_attrs(node.attrs)
// Live
is_livefn := node.attrs.contains('live')
is_livemain := g.pref.is_livemain && is_livefn
is_liveshared := g.pref.is_liveshared && is_livefn
is_livemode := g.pref.is_livemain || g.pref.is_liveshared
is_live_wrap := is_livefn && is_livemode
if is_livefn && !is_livemode {
eprintln('INFO: compile with `v -live ${g.pref.path} `, if you want to use the @[live] function ${node.name} .')
}
mut name := g.c_fn_name(node)
type_name := g.ret_styp(g.unwrap_generic(node.return_type))
// Live functions are protected by a mutex, because otherwise they
// can be changed by the live reload thread, *while* they are
// running, with unpredictable results (usually just crashing).
// For this purpose, the actual body of the live function,
// is put under a non publicly accessible function, that is prefixed
// with 'impl_live_' .
if is_livemode {
if is_livefn {
g.hotcode_fn_names << name
}
g.hotcode_fpaths << g.file.path
}
mut impl_fn_name := name
if is_live_wrap {
impl_fn_name = 'impl_live_${name}'
}
last_fn_c_name_save := g.last_fn_c_name
defer {
g.last_fn_c_name = last_fn_c_name_save
}
g.last_fn_c_name = impl_fn_name
if !g.inside_c_extern && node.trace_fns.len > 0 {
for trace_fn, call_fn in node.trace_fns {
if trace_fn in g.trace_fn_definitions {
continue
}
trace_fn_ret_type := g.styp(call_fn.return_type)
g.write('VV_LOC ${trace_fn_ret_type} ${c_name(trace_fn)}(')
g.definitions.write_string('VV_LOC ${trace_fn_ret_type} ${c_name(trace_fn)}(')
if call_fn.is_fn_var {
sig := g.fn_var_signature(call_fn.func.return_type, call_fn.func.params.map(it.typ),
call_fn.name)
g.write(sig)
g.definitions.write_string(sig)
} else {
g.fn_decl_params(call_fn.func.params, unsafe { nil }, call_fn.func.is_variadic,
call_fn.func.is_c_variadic)
}
g.writeln(') {')
g.definitions.write_string(');\n')
orig_fn_args := call_fn.func.params.map(it.name).join(', ')
add_trace_hook := g.pref.is_trace
&& call_fn.name !in ['v.debug.add_after_call', 'v.debug.add_before_call', 'v.debug.remove_after_call', 'v.debug.remove_before_call']
if g.pref.is_callstack {
if g.cur_fn.is_method || g.cur_fn.is_static_type_method {
g.writeln('\tarray_push((array*)&g_callstack, _MOV((v__debug__FnTrace[]){ ((v__debug__FnTrace){.name = _S("${g.table.type_to_str(g.cur_fn.receiver.typ)}.${g.cur_fn.name.all_after_last('__static__')}"),.file = _S("${call_fn.file}"),.line = ${call_fn.line},}) }));')
} else {
g.writeln('\tarray_push((array*)&g_callstack, _MOV((v__debug__FnTrace[]){ ((v__debug__FnTrace){.name = _S("${g.cur_fn.name}"),.file = _S("${call_fn.file}"),.line = ${call_fn.line},}) }));')
}
}
if call_fn.return_type == 0 || call_fn.return_type == ast.void_type {
if add_trace_hook {
g.writeln('\tif (!g_trace.in_hook) {')
g.writeln('\t\tv__debug__before_call_hook(_S("${call_fn.name}"));')
g.writeln('\t}')
}
g.writeln('\t${c_name(call_fn.name)}(${orig_fn_args});')
if add_trace_hook {
g.writeln('\tif (!g_trace.in_hook) {')
g.writeln('\t\tv__debug__after_call_hook(_S("${call_fn.name}"));')
g.writeln('\t}')
}
if g.pref.is_callstack {
g.writeln('\tarray_pop((array*)&g_callstack);')
}
} else {
if add_trace_hook {
g.writeln('\tif (!g_trace.in_hook) {')
g.writeln('\t\tv__debug__before_call_hook(_S("${call_fn.name}"));')
g.writeln('\t}')
}
g.writeln('\t${g.styp(call_fn.return_type)} ret = ${c_name(call_fn.name)}(${orig_fn_args});')
if g.pref.is_callstack {
g.writeln('\tarray_pop((array*)&g_callstack);')
}
if add_trace_hook {
g.writeln('\tif (!g_trace.in_hook) {')
g.writeln('\t\tv__debug__after_call_hook(_S("${call_fn.name}"));')
g.writeln('\t}')
}
g.writeln('\treturn ret;')
}
g.writeln2('}', '')
g.trace_fn_definitions << trace_fn
}
}
if is_live_wrap {
if is_livemain {
g.definitions.write_string('${type_name} (* ${impl_fn_name})(')
g.write('${type_name} no_impl_${name}(')
}
if is_liveshared {
if g.pref.os == .windows {
g.export_funcs << impl_fn_name
g.definitions.write_string('VV_EXP ${type_name} ${impl_fn_name}(')
g.write('VV_EXP ${type_name} ${impl_fn_name}(')
} else {
g.definitions.write_string('${type_name} ${impl_fn_name}(')
g.write('${type_name} ${impl_fn_name}(')
}
}
} else if g.inside_c_extern {
c_extern_fn_header := 'extern ${type_name} ${fn_attrs}${name.all_after_first('C__')}('
g.definitions.write_string(c_extern_fn_header)
} else {
if !(node.is_pub || g.pref.is_debug) {
// Private functions need to marked as static so that they are not exportable in the
// binaries
if g.pref.build_mode != .build_module && !g.pref.use_cache {
// If we are building vlib/builtin, we need all private functions like array_get
// to be public, so that all V programs can access them.
if !(node.is_anon && g.pref.parallel_cc) {
g.write('VV_LOC ')
// g.definitions.write_string('${g.static_modifier} VV_LOC ')
g.definitions.write_string('VV_LOC ')
}
}
}
// as a temp solution generic functions are marked static
// when -usecache is enabled to fix duplicate symbols with clang
// TODO: implement a better sulution
visibility_kw := if g.cur_concrete_types.len > 0
&& (g.pref.build_mode == .build_module || g.pref.use_cache) {
'static '
} else {
''
}
fn_header := '${visibility_kw}${type_name} ${fn_attrs}${name}('
g.definitions.write_string(fn_header)
g.write(fn_header)
}
arg_start_pos := g.out.len
fargs, fargtypes, heap_promoted := g.fn_decl_params(node.params, node.scope, node.is_variadic,
node.is_c_variadic)
if is_closure {
g.nr_closures++
}
arg_str := g.out.after(arg_start_pos)
if node.no_body || ((g.pref.use_cache && g.pref.build_mode != .build_module) && node.is_builtin
&& !g.pref.is_test) || skip {
// Just a function header. Builtin function bodies are defined in builtin.o
g.definitions.writeln(');') // NO BODY')
if !g.inside_c_extern {
g.writeln(');')
}
return
}
if node.params.len == 0 {
g.definitions.write_string('void')
}
if attr := node.attrs.find_first('_linker_section') {
g.definitions.writeln(') __attribute__ ((section ("${attr.arg}")));')
} else {
g.definitions.writeln(');')
}
g.writeln(') {')
if is_closure {
g.writeln('${cur_closure_ctx}* ${closure_ctx} = g_closure.closure_get_data();')
}
for i, is_promoted in heap_promoted {
if is_promoted {
g.writeln('${fargtypes[i]}* ${fargs[i]} = HEAP(${fargtypes[i]}, _v_toheap_${fargs[i]});')
}
}
g.indent++
for defer_stmt in node.defer_stmts {
g.writeln('bool ${g.defer_flag_var(defer_stmt)} = false;')
for var in defer_stmt.defer_vars {
if var.name in fargs || var.kind == .constant {
continue
}
if var.kind == .variable {
if var.name !in g.defer_vars {
g.defer_vars << var.name
mut deref := ''
if v := var.scope.find_var(var.name) {
if v.is_auto_heap {
deref = '*'
}
}
info := var.obj as ast.Var
if g.table.sym(info.typ).kind != .function {
if info.is_static {
g.write('static ')
}
if info.is_volatile {
g.write('volatile ')
}
g.writeln('${g.styp(info.typ)}${deref} ${c_name(var.name)};')
}
}
}
}
}
g.indent--
if is_live_wrap {
// The live function just calls its implementation dual, while ensuring
// that the call is wrapped by the mutex lock & unlock calls.
// Adding the mutex lock/unlock inside the body of the implementation
// function is not reliable, because the implementation function can do
// an early exit, which will leave the mutex locked.
mut fn_args_list := []string{}
for ia, fa in fargs {
fn_args_list << '${fargtypes[ia]} ${fa}'
}
mut live_fncall := '${impl_fn_name}(' + fargs.join(', ') + ');'
mut live_fnreturn := ''
if type_name != 'void' {
live_fncall = '${type_name} res = ${live_fncall}'
live_fnreturn = 'return res;'
}
g.definitions.writeln('${type_name} ${name}(' + fn_args_list.join(', ') + ');')
g.hotcode_definitions.writeln('${type_name} ${name}(' + fn_args_list.join(', ') + '){')
g.hotcode_definitions.writeln(' pthread_mutex_lock(&live_fn_mutex);')
g.hotcode_definitions.writeln(' ${live_fncall}')
g.hotcode_definitions.writeln(' pthread_mutex_unlock(&live_fn_mutex);')
g.hotcode_definitions.writeln(' ${live_fnreturn}')
g.hotcode_definitions.writeln('}')
}
// Profiling mode? Start counting at the beginning of the function (save current time).
if g.pref.is_prof && g.pref.build_mode != .build_module {
g.profile_fn(node)
}
// we could be in an anon fn so save outer fn defer stmts
prev_defer_stmts := g.defer_stmts
g.defer_stmts = []
ctmp := g.tmp_count
g.tmp_count = 0
defer {
g.tmp_count = ctmp
}
prev_inside_ternary := g.inside_ternary
g.inside_ternary = 0
prev_indent := g.indent
g.indent = 0
defer {
g.indent = prev_indent
}
g.stmts(node.stmts)
g.inside_ternary = prev_inside_ternary
if node.is_noreturn {
g.writeln('\twhile(1);')
}
// clear g.fn_mut_arg_names
if !node.has_return {
g.write_defer_stmts_when_needed()
}
if node.is_anon {
g.defer_stmts = prev_defer_stmts
} else {
g.defer_stmts = []
}
if node.return_type != ast.void_type && node.stmts.len > 0 && node.stmts.last() !is ast.Return
&& !node.attrs.contains('_naked') {
default_expr := g.type_default(node.return_type)
// TODO: perf?
if default_expr == '{0}' {
g.writeln('\treturn (${type_name})${default_expr};')
} else {
g.writeln('\treturn ${default_expr};')
}
}
g.writeln('}')
if g.pref.printfn_list.len > 0 && g.last_fn_c_name in g.pref.printfn_list {
println(g.out.after(fn_start_pos))
}
weak := if node.is_weak { 'VWEAK ' } else { '' }
for attr in node.attrs {
if attr.name == 'export' {
g.writeln('// export alias: ${attr.arg} -> ${name}')
g.export_funcs << attr.arg
export_alias := '${weak}${type_name} ${fn_attrs}${attr.arg}(${arg_str})'
g.definitions.writeln('VV_EXP ${export_alias}; // exported fn ${node.name}')
g.writeln('${export_alias} {')
g.write2('\treturn ${name}(', fargs.join(', '))
g.writeln2(');', '}')
}
}
}
fn (mut g Gen) c_fn_name(node &ast.FnDecl) string {
mut name := node.name
if name in ['+', '-', '*', '/', '%', '<', '=='] {
name = util.replace_op(name)
}
if node.is_method {
unwrapped_rec_typ := g.unwrap_generic(node.receiver.typ)
name = g.cc_type(unwrapped_rec_typ, false) + '_' + name
if g.table.sym(unwrapped_rec_typ).kind == .placeholder {
name = name.replace_each(c_fn_name_escape_seq)
}
}
if node.is_anon && g.comptime.comptime_for_method_var != ''
&& node.scope.is_inherited_var('method') {
name = '${name}_${g.comptime.comptime_loop_id}'
}
if node.language == .c {
name = util.no_dots(name)
} else {
name = c_fn_name(name)
}
if node.generic_names.len > 0 {
name = g.generic_fn_name(g.cur_concrete_types, name)
name = name.replace_each(c_fn_name_escape_seq)
}
if g.pref.translated || g.file.is_translated || node.is_file_translated {
if cattr := node.attrs.find_first('c') {
// This fixes unknown symbols errors when building separate .c => .v files into .o files
// example:
// @[c: 'P_TryMove'] fn p_trymove(thing &Mobj_t, x int, y int) bool
// translates to:
// bool P_TryMove(main__Mobj_t* thing, int x, int y);
// In fn_call every time `p_trymove` is called, `P_TryMove` will be generated instead.
name = cattr.arg
}
}
return name
}
const closure_ctx = '_V_closure_ctx'
fn (mut g Gen) gen_closure_fn_name(node ast.AnonFn) string {
mut fn_name := node.decl.name
if node.decl.generic_names.len > 0 {
fn_name = g.generic_fn_name(g.cur_concrete_types, fn_name)
}
if node.inherited_vars.len > 0 && g.comptime.comptime_for_method_var != ''
&& node.inherited_vars.any(it.name == 'method') {
fn_name += '_${g.comptime.comptime_loop_id}'
}
return fn_name
}
fn (mut g Gen) closure_ctx(node ast.FnDecl) string {
mut fn_name := node.name
if node.generic_names.len > 0 {
fn_name = g.generic_fn_name(g.cur_concrete_types, fn_name)
}
return 'struct _V_${fn_name}_Ctx'
}
fn (mut g Gen) gen_anon_fn(mut node ast.AnonFn) {
is_amp := g.is_amp
g.is_amp = false
defer {
g.is_amp = is_amp
}
g.gen_anon_fn_decl(mut node)
fn_name := g.gen_closure_fn_name(node)
if !node.decl.scope.has_inherited_vars() {
g.write(fn_name)
return
}
ctx_struct := g.closure_ctx(node.decl)
// it may be possible to optimize `memdup` out if the closure never leaves current scope
// TODO: in case of an assignment, this should only call "closure_set_data" and "closure_set_function" (and free the former data)
g.write('builtin__closure__closure_create(${fn_name}, (${ctx_struct}*) memdup_uncollectable(&(${ctx_struct}){')
g.indent++
for var in node.inherited_vars {
mut has_inherited := false
mut is_ptr := false
var_name := c_name(var.name)
if obj := node.decl.scope.find_var(var.name) {
is_ptr = obj.typ.is_ptr()
if obj.has_inherited {
has_inherited = true
var_sym := g.table.sym(var.typ)
if var_sym.info is ast.ArrayFixed {
g.write('.${var_name} = {')
for i in 0 .. var_sym.info.size {
g.write('${closure_ctx}->${var_name}[${i}],')
}
g.writeln('},')
} else {
g.writeln('.${var_name} = ${closure_ctx}->${var_name},')
}
}
}
if !has_inherited {
var_sym := g.table.sym(var.typ)
if var_sym.info is ast.ArrayFixed {
g.write('.${var_name} = {')
for i in 0 .. var_sym.info.size {
g.write('${var_name}[${i}],')
}
g.writeln('},')
} else if g.is_autofree && !var.is_mut && var_sym.info is ast.Array {
g.writeln('.${var_name} = array_clone(&${var_name}),')
} else if g.is_autofree && !var.is_mut && var_sym.kind == .string {
g.writeln('.${var_name} = string_clone(${var_name}),')
} else {
mut is_auto_heap := false
mut field_name := ''
if obj := node.decl.scope.parent.find(var.name) {
if obj is ast.Var {
is_auto_heap = !obj.is_stack_obj && obj.is_auto_heap
if obj.smartcasts.len > 0 {
if g.table.type_kind(obj.typ) == .sum_type {
cast_sym := g.table.sym(obj.smartcasts.last())
field_name += '._${cast_sym.cname}'
}
}
}
}
if (is_auto_heap && !is_ptr) || field_name != '' {
g.writeln('.${var_name} = *${var_name}${field_name},')
} else {
g.writeln('.${var_name} = ${var_name},')
}
}
}
}
g.indent--
g.write('}, sizeof(${ctx_struct})))')
g.empty_line = false
}
fn (mut g Gen) gen_anon_fn_decl(mut node ast.AnonFn) {
mut fn_name := g.gen_closure_fn_name(node)
if node.has_gen[fn_name] {
return
}
node.has_gen[fn_name] = true
mut builder := strings.new_builder(256)
// Generate a closure struct
if node.inherited_vars.len > 0 {
ctx_struct := g.closure_ctx(node.decl)
if ctx_struct !in g.closure_structs {
g.closure_structs << ctx_struct
g.definitions.writeln('${ctx_struct} {')
for var in node.inherited_vars {
var_sym := g.table.sym(var.typ)
if var_sym.info is ast.FnType {
sig := g.fn_var_signature(var_sym.info.func.return_type, var_sym.info.func.params.map(it.typ),
c_name(var.name))
g.definitions.writeln('\t' + sig + ';')
} else {
styp := g.styp(var.typ)
g.definitions.writeln('\t${styp} ${c_name(var.name)};')
}
}
g.definitions.writeln('};\n')
}
}
pos := g.out.len
was_anon_fn := g.anon_fn
g.anon_fn = true
g.fn_decl(node.decl)
g.anon_fn = was_anon_fn
builder.write_string(g.out.cut_to(pos))
out := builder.str()
g.anon_fn_definitions << out
if g.pref.parallel_cc {
g.extern_out.writeln('extern ${out.all_before(' {')};')
}
}
fn (g &Gen) defer_flag_var(stmt &ast.DeferStmt) string {
return '${g.last_fn_c_name}_defer_${stmt.idx_in_fn}'
}
fn (mut g Gen) write_defer_stmts_when_needed() {
// unlock all mutexes, in case we are in a lock statement. defers are not allowed in lock statements
g.unlock_locks()
if g.defer_stmts.len > 0 {
g.write_defer_stmts()
}
if g.defer_profile_code.len > 0 {
g.writeln2('', '\t// defer_profile_code')
g.writeln2(g.defer_profile_code, '')
}
}
fn (mut g Gen) fn_decl_params(params []ast.Param, scope &ast.Scope, is_variadic bool, is_c_variadic bool) ([]string, []string, []bool) {
mut fparams := []string{}
mut fparamtypes := []string{}
mut heap_promoted := []bool{}
if params.len == 0 {
// in C, `()` is untyped, unlike `(void)`
if !g.inside_c_extern {
g.write('void')
}
}
for i, param in params {
mut caname := if param.name == '_' {
'_d${i + 1}'
} else {
c_name(param.name)
}
mut typ := g.unwrap_generic(param.typ)
if g.pref.translated && g.file.is_translated && param.typ.has_flag(.variadic) {
typ = g.table.sym(typ).array_info().elem_type.set_flag(.variadic)
}
param_type_sym := g.table.sym(typ)
mut param_type_name := g.styp(typ)
if param.typ.has_flag(.generic) {
param_type_name = param_type_name.replace_each(c_fn_name_escape_seq)
}
if param_type_sym.kind == .function && !typ.has_flag(.option) {
info := param_type_sym.info as ast.FnType
func := info.func
if !g.inside_c_extern {
g.write('${g.styp(func.return_type)} (*${caname})(')
}
g.definitions.write_string('${g.styp(func.return_type)} (*${caname})(')
g.fn_decl_params(func.params, unsafe { nil }, func.is_variadic, func.is_c_variadic)
if !g.inside_c_extern {
g.write(')')
}
g.definitions.write_string(')')
fparams << caname
fparamtypes << param_type_name
heap_promoted << false
} else {
mut heap_prom := false
if scope != unsafe { nil } {
if param.name != '_' {
if v := scope.find_var(param.name) {
if !v.is_stack_obj && v.is_auto_heap {
heap_prom = true
}
}
}
}
var_name_prefix := if heap_prom { '_v_toheap_' } else { '' }
const_prefix := if param.typ.is_any_kind_of_pointer() && !param.is_mut
&& param.name.starts_with('const_') {
'const '
} else {
''
}
s := '${const_prefix}${param_type_name} ${var_name_prefix}${caname}'
if !g.inside_c_extern {
g.write(s)
}
g.definitions.write_string(s)
fparams << caname
fparamtypes << param_type_name
heap_promoted << heap_prom
}
if i < params.len - 1 {
if !g.inside_c_extern {
g.write(', ')
}
g.definitions.write_string(', ')
}
}
if (g.pref.translated && is_variadic) || is_c_variadic {
if !g.inside_c_extern {
g.write(', ... ')
}
g.definitions.write_string(', ... ')
}
return fparams, fparamtypes, heap_promoted
}
fn (mut g Gen) get_anon_fn_type_name(mut node ast.AnonFn, var_name string) string {
mut builder := strings.new_builder(64)
return_styp := g.styp(node.decl.return_type)
builder.write_string('${return_styp} (*${var_name}) (')
if node.decl.params.len == 0 {
builder.write_string('void)')
} else {
for i, param in node.decl.params {
param_styp := g.styp(param.typ)
builder.write_string('${param_styp} ${param.name}')
if i != node.decl.params.len - 1 {
builder.write_string(', ')
}
}
builder.write_string(')')
}
return builder.str()
}
fn (mut g Gen) call_expr(node ast.CallExpr) {
if node.should_be_skipped {
return
}
// NOTE: everything could be done this way
// see my comment in parser near anon_fn
mut tmp_anon_fn_var := ''
if node.left is ast.AnonFn {
if node.left.inherited_vars.len > 0 {
tmp_anon_fn_var = g.new_tmp_var()
fn_type := g.fn_var_signature(node.left.decl.return_type, node.left.decl.params.map(it.typ),
tmp_anon_fn_var)
line := g.go_before_last_stmt().trim_space()
g.empty_line = true
g.write('${fn_type} = ')
g.expr(node.left)
g.writeln(';')
g.set_current_pos_as_last_stmt_pos()
g.write(line)
if node.or_block.kind == .absent {
if g.out.last_n(1) != '\n' {
g.writeln('')
}
g.write(tmp_anon_fn_var)
}
} else if node.or_block.kind == .absent {
g.expr(node.left)
}
} else if !g.inside_curry_call && node.left is ast.IndexExpr && node.name == '' {
if node.or_block.kind == .absent {
old_is_fn_index_call := g.is_fn_index_call
g.is_fn_index_call = true
g.expr(node.left)
g.is_fn_index_call = old_is_fn_index_call
} else {
// map1['key']() handling
line := g.go_before_last_stmt()
g.empty_line = true
// temp var for map1['key'] where value is a fn to be called
left_typ := g.table.value_type(node.left.left_type)
tmp_res := g.new_tmp_var()
fn_sym := g.table.sym(left_typ).info as ast.FnType
fn_type := g.fn_var_signature(fn_sym.func.return_type, fn_sym.func.params.map(it.typ),
tmp_res)
old_is_fn_index_call := g.is_fn_index_call
g.is_fn_index_call = true
g.write('${fn_type} = ')
g.expr(node.left)
g.is_fn_index_call = old_is_fn_index_call
g.writeln(';')
tmp_res2 := g.new_tmp_var()
// uses the `tmp_res` as fn name (where it is a ptr to fn var)
g.write('${g.styp(node.return_type)} ${tmp_res2} = ${tmp_res}')
g.last_tmp_call_var << tmp_res2
old_inside_curry_call := g.inside_curry_call
g.inside_curry_call = true
// map1['key']()() handling
g.expr(node)
g.inside_curry_call = old_inside_curry_call
g.write2(line, '*(${g.base_type(node.return_type)}*)${tmp_res2}.data')
return
}
} else if !g.inside_curry_call && node.left is ast.CallExpr && node.name == '' {
if node.or_block.kind == .absent {
g.expr(node.left)
} else {
ret_typ := node.return_type
line := g.go_before_last_stmt()
g.empty_line = true
tmp_res := g.new_tmp_var()
g.write('${g.styp(ret_typ)} ${tmp_res} = ')
g.last_tmp_call_var << tmp_res
g.expr(node.left)
old_inside_curry_call := g.inside_curry_call
g.inside_curry_call = true
g.expr(node)
g.inside_curry_call = old_inside_curry_call
g.write2(line, '*(${g.base_type(ret_typ)}*)${tmp_res}.data')
return
}
}
old_inside_call := g.inside_call
g.inside_call = true
defer {
g.inside_call = old_inside_call
}
gen_keep_alive := node.is_keep_alive && node.return_type != ast.void_type
&& g.pref.gc_mode in [.boehm_full, .boehm_incr, .boehm_full_opt, .boehm_incr_opt]
gen_or := node.or_block.kind != .absent // && !g.is_autofree
is_gen_or_and_assign_rhs := gen_or && !g.discard_or_result
mut cur_line := if !g.inside_curry_call && (is_gen_or_and_assign_rhs || gen_keep_alive) { // && !g.is_autofree {
// `x := foo() or { ...}`
// cut everything that has been generated to prepend option variable creation
line := g.go_before_last_stmt()
g.out.write_string(util.tabs(g.indent))
line
} else {
''
}
// g.write('/*EE line="$cur_line"*/')
tmp_opt := if gen_or || gen_keep_alive {
if g.inside_curry_call && g.last_tmp_call_var.len > 0 {
g.last_tmp_call_var.pop()
} else if !g.inside_or_block {
new_tmp := g.new_tmp_var()
g.last_tmp_call_var << new_tmp
new_tmp
} else {
g.new_tmp_var()
}
} else {
''
}
if gen_or || gen_keep_alive {
mut ret_typ := node.return_type
if g.table.sym(ret_typ).kind == .alias {
unaliased_type := g.table.unaliased_type(ret_typ)
if unaliased_type.has_option_or_result() {
ret_typ = unaliased_type
}
} else if node.return_type_generic != 0 && node.raw_concrete_types.len == 0 {
unwrapped_ret_typ := g.unwrap_generic(node.return_type_generic)
if !unwrapped_ret_typ.has_flag(.generic) {
ret_sym := g.table.sym(unwrapped_ret_typ)
if ret_sym.info is ast.Array && g.table.sym(node.return_type_generic).kind == .array {
// Make []T returns T type when array was supplied to T
if g.table.type_to_str(node.return_type_generic).count('[]') < g.table.type_to_str(unwrapped_ret_typ).count('[]') {
ret_typ = g.unwrap_generic(ret_sym.info.elem_type).derive(unwrapped_ret_typ)
}
}
} else {
r_typ := g.resolve_return_type(node)
if r_typ != ast.void_type && !r_typ.has_flag(.generic) {
// restore result/option flag, as `resolve_return_type` may clean them
if node.return_type.has_flag(.result) {
ret_typ = r_typ.set_flag(.result)
} else {
ret_typ = r_typ.set_flag(.option)
}
}
}
}
mut styp := g.styp(ret_typ)
if gen_or && !is_gen_or_and_assign_rhs {
cur_line = g.go_before_last_stmt()
}
if gen_or && g.infix_left_var_name.len > 0 {
g.writeln('${styp} ${tmp_opt};')
g.writeln('if (${g.infix_left_var_name}) {')
g.indent++
g.write('${tmp_opt} = ')
} else if !g.inside_curry_call {
if g.assign_ct_type != 0 && node.or_block.kind in [.propagate_option, .propagate_result] {
styp = g.styp(g.assign_ct_type.derive(ret_typ))
}
g.write('${styp} ${tmp_opt} = ')
if node.left is ast.AnonFn {
if node.left.inherited_vars.len > 0 {
g.write(tmp_anon_fn_var)
} else {
g.expr(node.left)
}
}
}
}
if node.is_method && !node.is_field {
if g.pref.experimental && node.args.len > 0 && node.name == 'writeln'
&& node.args[0].expr is ast.StringInterLiteral
&& g.table.sym(node.receiver_type).name == 'strings.Builder' {
g.string_inter_literal_sb_optimized(node)
} else {
g.method_call(node)
}
} else {
g.fn_call(node)
}
if gen_or {
g.or_block(tmp_opt, node.or_block, node.return_type)
mut unwrapped_typ := node.return_type.clear_option_and_result()
if g.table.sym(unwrapped_typ).kind == .alias {
unaliased_type := g.table.unaliased_type(unwrapped_typ)
if unaliased_type.has_option_or_result() {
unwrapped_typ = unaliased_type.clear_option_and_result()
}
}
mut unwrapped_styp := g.styp(unwrapped_typ)
if g.infix_left_var_name.len > 0 {
g.indent--
g.writeln('}')
g.set_current_pos_as_last_stmt_pos()
}
if unwrapped_typ == ast.void_type {
g.write('\n ${cur_line}')
} else if !g.inside_curry_call {
if !g.inside_const_opt_or_res {
if g.assign_ct_type != 0
&& node.or_block.kind in [.propagate_option, .propagate_result] {
unwrapped_styp = g.styp(g.assign_ct_type.derive(node.return_type).clear_option_and_result())
}
if g.table.sym(node.return_type).kind == .array_fixed
&& unwrapped_styp.starts_with('_v_') {
unwrapped_styp = unwrapped_styp[3..]
}
if node.is_return_used {
// return value is used, so we need to write the unwrapped temporary var
g.write('\n ${cur_line}(*(${unwrapped_styp}*)${tmp_opt}.data)')
} else {
g.write('\n ${cur_line}')
}
} else {
if !g.inside_or_block && g.last_tmp_call_var.len > 0 && !cur_line.contains(' = ') {
g.write('\n\t*(${unwrapped_styp}*)${g.last_tmp_call_var.pop()}.data = ${cur_line}(*(${unwrapped_styp}*)${tmp_opt}.data)')
} else {
g.write('\n ${cur_line}(*(${unwrapped_styp}*)${tmp_opt}.data)')
}
}
}
} else if gen_keep_alive {
if node.return_type == ast.void_type {
g.write('\n ${cur_line}')
} else {
g.write('\n ${cur_line} ${tmp_opt}')
}
}
if node.is_noreturn {
if g.inside_ternary == 0 {
g.writeln(';')
g.write('VUNREACHABLE()')
} else {
$if msvc {
// MSVC has no support for the statement expressions used below
} $else {
g.write(', ({VUNREACHABLE();})')
}
}
}
}
fn (mut g Gen) conversion_function_call(prefix string, postfix string, node ast.CallExpr) {
g.write('${prefix}( (')
g.expr(node.left)
dot := if node.left_type.is_ptr() { '->' } else { '.' }
g.write(')${dot}_typ )${postfix}')
}
@[inline]
fn (mut g Gen) gen_arg_from_type(node_type ast.Type, node ast.Expr) {
if node_type.has_flag(.shared_f) {
if node_type.is_ptr() {
g.write('&')
}
g.expr(node)
g.write('->val')
} else {
if node_type.is_ptr() {
g.expr(node)
} else if !node.is_lvalue()
|| (node is ast.Ident && g.table.is_interface_smartcast(node.obj)) {
g.write('ADDR(${g.styp(node_type)}, ')
g.expr(node)
g.write(')')
} else {
g.write('&')
g.expr(node)
}
}
}
fn (mut g Gen) gen_map_method_call(node ast.CallExpr, left_type ast.Type, left_sym ast.TypeSymbol) bool {
match node.name {
'reserve' {
g.write('map_reserve(')
g.gen_arg_from_type(left_type, node.left)
g.write(', ')
g.expr(node.args[0].expr)
g.write(')')
}
'delete' {
left_info := left_sym.info as ast.Map
elem_type_str := g.styp(left_info.key_type)
g.write('map_delete(')
g.gen_arg_from_type(left_type, node.left)
g.write(', &(${elem_type_str}[]){')
g.expr(node.args[0].expr)
g.write('})')
}
'free', 'clear', 'keys', 'values' {
g.write('map_${node.name}(')
g.gen_arg_from_type(left_type, node.left)
g.write(')')
}
else {
return false
}
}
return true
}
fn (mut g Gen) gen_array_method_call(node ast.CallExpr, left_type ast.Type, left_sym ast.TypeSymbol) bool {
match node.name {
'filter' {
g.gen_array_filter(node)
}
'sort' {
g.gen_array_sort(node)
}
'sorted' {
g.gen_array_sorted(node)
}
'insert' {
g.gen_array_insert(node)
}
'map' {
g.gen_array_map(node)
}
'prepend' {
g.gen_array_prepend(node)
}
'contains' {
g.gen_array_contains(left_type, node.left, node.args[0].typ, node.args[0].expr)
}
'index' {
g.gen_array_index(node)
}
'wait' {
g.gen_array_wait(node)
}
'any' {
g.gen_array_any(node)
}
'count' {
g.gen_array_count(node)
}
'all' {
g.gen_array_all(node)
}
'delete', 'drop', 'delete_last', 'delete_many' {
g.write('array_${node.name}(')
g.gen_arg_from_type(left_type, node.left)
if node.name != 'delete_last' {
g.write(', ')
g.expr(node.args[0].expr)
if node.name == 'delete_many' {
g.write(', ')
g.expr(node.args[1].expr)
}
}
g.write(')')
}
'grow_cap', 'grow_len' {
g.write('array_${node.name}(')
g.gen_arg_from_type(left_type, node.left)
g.write(', ')
g.expr(node.args[0].expr)
g.write(')')
}
'first', 'last', 'pop_left', 'pop' {
mut noscan := ''
array_info := left_sym.info as ast.Array
if node.name in ['pop_left', 'pop'] {
noscan = g.check_noscan(array_info.elem_type)
}
return_type_str := g.styp(node.return_type)
g.write('(*(${return_type_str}*)array_${node.name}${noscan}(')
if node.name in ['pop_left', 'pop'] {
g.gen_arg_from_type(left_type, node.left)
} else {
if node.left_type.is_ptr() {
g.write2('(', '*'.repeat(node.left_type.nr_muls()))
g.expr(node.left)
g.write(')')
} else {
g.expr(node.left)
}
if left_type.has_flag(.shared_f) {
g.write('.val')
}
}
g.write('))')
}
'clone', 'repeat' {
array_info := left_sym.info as ast.Array
array_depth := g.get_array_depth(array_info.elem_type)
to_depth := if array_depth >= 0 { '_to_depth' } else { '' }
mut is_range_slice := false
if node.left is ast.IndexExpr && node.left.index is ast.RangeExpr
&& node.name == 'clone' {
is_range_slice = true
}
to_static := if is_range_slice { '_static' } else { '' }
g.write('array_${node.name}${to_static}${to_depth}(')
if node.name == 'clone' {
if is_range_slice {
if node.left_type.is_ptr() {
g.write('*'.repeat(node.left_type.nr_muls()))
}
g.expr(node.left)
} else {
g.gen_arg_from_type(left_type, node.left)
}
} else {
if node.left_type.is_ptr() {
g.write('*'.repeat(node.left_type.nr_muls()))
}
g.expr(node.left)
}
if node.name == 'repeat' {
g.write(', ')
g.expr(node.args[0].expr)
}
if array_depth >= 0 {
g.write(', ${array_depth}')
}
g.write(')')
}
else {
return false
}
}
return true
}
fn (mut g Gen) gen_fixed_array_method_call(node ast.CallExpr, left_type ast.Type) bool {
match node.name {
'index' {
g.gen_array_index(node)
}
'contains' {
g.gen_array_contains(left_type, node.left, node.args[0].typ, node.args[0].expr)
}
'any' {
g.gen_array_any(node)
}
'count' {
g.gen_array_count(node)
}
'all' {
g.gen_array_all(node)
}
'map' {
g.gen_array_map(node)
}
'sort' {
g.gen_array_sort(node)
}
'sorted' {
g.gen_array_sorted(node)
}
'sort_with_compare' {
g.gen_fixed_array_sort_with_compare(node)
}
'sorted_with_compare' {
g.gen_fixed_array_sorted_with_compare(node)
}
'reverse' {
g.gen_fixed_array_reverse(node)
}
'reverse_in_place' {
g.gen_fixed_array_reverse_in_place(node)
}
else {
return false
}
}
return true
}
fn (mut g Gen) gen_to_str_method_call(node ast.CallExpr) bool {
mut rec_type := node.receiver_type
if rec_type.has_flag(.shared_f) {
rec_type = rec_type.clear_flag(.shared_f).set_nr_muls(0)
}
left_node := node.left
if left_node is ast.ComptimeSelector {
if left_node.typ_key != '' {
rec_type = g.type_resolver.get_ct_type_or_default(left_node.typ_key, rec_type)
g.gen_expr_to_string(left_node, rec_type)
return true
}
} else if left_node is ast.PostfixExpr {
rec_type = g.type_resolver.get_type_or_default(left_node.expr, rec_type)
if left_node.op == .question {
rec_type = rec_type.clear_flag(.option)
}
g.gen_expr_to_string(left_node, rec_type)
return true
} else if left_node is ast.ComptimeCall {
if left_node.kind == .method {
sym := g.table.sym(g.unwrap_generic(left_node.left_type))
if m := sym.find_method(g.comptime.comptime_for_method.name) {
rec_type = m.return_type
g.gen_expr_to_string(left_node, rec_type)
return true
}
}
} else if left_node is ast.Ident {
if left_node.obj is ast.Var {
if left_node.obj.ct_type_var != .no_comptime {
rec_type = g.type_resolver.get_type(left_node)
g.gen_expr_to_string(left_node, rec_type)
return true
} else if left_node.obj.smartcasts.len > 0 {
rec_type = g.unwrap_generic(left_node.obj.smartcasts.last())
cast_sym := g.table.sym(rec_type)
if cast_sym.info is ast.Aggregate {
rec_type = cast_sym.info.types[g.aggregate_type_idx]
}
g.gen_expr_to_string(left_node, rec_type)
return true
} else if left_node.or_expr.kind == .propagate_option {
g.gen_expr_to_string(left_node, g.unwrap_generic(node.left_type))
return true
}
}
} else if left_node is ast.None {
g.gen_expr_to_string(left_node, ast.none_type)
return true
} else if node.left_type.has_flag(.option) {
g.gen_expr_to_string(left_node, g.unwrap_generic(node.left_type))
return true
}
g.get_str_fn(rec_type)
return false
}
// resolve_return_type resolves the generic return type of CallExpr
fn (mut g Gen) resolve_return_type(node ast.CallExpr) ast.Type {
if node.is_method {
if func := g.table.find_method(g.table.sym(node.left_type), node.name) {
if func.generic_names.len > 0 {
mut concrete_types := node.concrete_types.map(g.unwrap_generic(it))
mut rec_len := 0
if node.left_type.has_flag(.generic) {
rec_sym := g.table.final_sym(g.unwrap_generic(node.left_type))
match rec_sym.info {
ast.Struct, ast.Interface, ast.SumType {
rec_len += rec_sym.info.generic_types.len
}
else {}
}
}
mut call_ := unsafe { node }
comptime_args := g.type_resolver.resolve_args(g.cur_fn, func, mut call_,
concrete_types)
if concrete_types.len > 0 {
for k, v in comptime_args {
if (rec_len + k) < concrete_types.len {
if !node.concrete_types[k].has_flag(.generic) {
concrete_types[rec_len + k] = g.unwrap_generic(v)
}
}
}
}
if gen_type := g.table.convert_generic_type(node.return_type_generic,
func.generic_names, concrete_types)
{
if !gen_type.has_flag(.generic) {
return if node.or_block.kind == .absent {
gen_type
} else {
gen_type.clear_option_and_result()
}
}
}
}
}
} else if node.is_static_method {
if g.cur_fn != unsafe { nil } {
_, name := g.table.convert_generic_static_type_name(node.name, g.cur_fn.generic_names,
g.cur_concrete_types)
if func := g.table.find_fn(name) {
return if node.or_block.kind == .absent {
func.return_type
} else {
func.return_type.clear_option_and_result()
}
}
}
return if node.or_block.kind == .absent {
node.return_type
} else {
node.return_type.clear_option_and_result()
}
} else {
if func := g.table.find_fn(node.name) {
if func.generic_names.len > 0 {
mut concrete_types := node.concrete_types.map(g.unwrap_generic(it))
mut call_ := unsafe { node }
comptime_args := g.type_resolver.resolve_args(g.cur_fn, func, mut call_,
concrete_types)
if concrete_types.len > 0 {
for k, v in comptime_args {
if k < concrete_types.len {
if !node.concrete_types[k].has_flag(.generic) {
concrete_types[k] = g.unwrap_generic(v)
}
}
}
}
if gen_type := g.table.convert_generic_type(node.return_type_generic,
func.generic_names, concrete_types)
{
if !gen_type.has_flag(.generic) {
return if node.or_block.kind == .absent {
gen_type
} else {
gen_type.clear_option_and_result()
}
}
}
}
}
}
return ast.void_type
}
fn (mut g Gen) resolve_receiver_name(node ast.CallExpr, unwrapped_rec_type ast.Type, final_left_sym ast.TypeSymbol,
left_sym ast.TypeSymbol, typ_sym ast.TypeSymbol) string {
mut receiver_type_name := util.no_dots(g.cc_type(unwrapped_rec_type, false))
if final_left_sym.kind == .map && node.name in ['clone', 'move'] {
receiver_type_name = 'map'
}
if final_left_sym.kind == .array && !(left_sym.kind == .alias && left_sym.has_method(node.name))
&& node.name in ['clear', 'repeat', 'sort_with_compare', 'sorted_with_compare', 'push_many', 'trim', 'first', 'last', 'pop_left', 'pop', 'clone', 'reverse', 'slice', 'pointers'] {
if !(left_sym.info is ast.Alias && typ_sym.has_method(node.name)) {
// `array_Xyz_clone` => `array_clone`
receiver_type_name = 'array'
}
}
return receiver_type_name
}
fn (mut g Gen) unwrap_receiver_type(node ast.CallExpr) (ast.Type, &ast.TypeSymbol) {
left_type := g.unwrap_generic(node.left_type)
mut unwrapped_rec_type := node.receiver_type
if g.cur_fn != unsafe { nil } && g.cur_fn.generic_names.len > 0 { // in generic fn
unwrapped_rec_type = g.unwrap_generic(node.receiver_type)
unwrapped_rec_type = g.type_resolver.unwrap_generic_expr(node.left, unwrapped_rec_type)
} else { // in non-generic fn
sym := g.table.sym(node.receiver_type)
match sym.info {
ast.Struct, ast.Interface, ast.SumType {
generic_names := sym.info.generic_types.map(g.table.sym(it).name)
// see comment at top of vlib/v/gen/c/utils.v
mut muttable := unsafe { &ast.Table(g.table) }
if utyp := muttable.convert_generic_type(node.receiver_type, generic_names,
sym.info.concrete_types)
{
unwrapped_rec_type = utyp
}
}
else {}
}
}
if node.from_embed_types.len == 0 && node.left is ast.Ident {
if node.left.obj is ast.Var {
if node.left.obj.smartcasts.len > 0 {
if node.left.obj.ct_type_var == .smartcast {
unwrapped_rec_type = g.unwrap_generic(g.type_resolver.get_type(node.left))
} else {
unwrapped_rec_type = g.unwrap_generic(node.left.obj.smartcasts.last())
cast_sym := g.table.sym(unwrapped_rec_type)
if cast_sym.info is ast.Aggregate {
unwrapped_rec_type = cast_sym.info.types[g.aggregate_type_idx]
}
}
}
}
}
mut typ_sym := g.table.sym(unwrapped_rec_type)
// non-option alias type that undefined this method (not include `str`) need to use parent type
if !left_type.has_flag(.option) && mut typ_sym.info is ast.Alias && node.name != 'str'
&& !typ_sym.has_method(node.name) {
unwrapped_rec_type = typ_sym.info.parent_type
typ_sym = g.table.sym(unwrapped_rec_type)
} else if mut typ_sym.info is ast.Array && !typ_sym.has_method(node.name) && node.name != 'str' {
typ := g.table.unaliased_type(typ_sym.info.elem_type)
typ_idx := g.table.find_type_idx(g.table.array_name(typ))
if typ_idx > 0 {
unwrapped_rec_type = ast.idx_to_type(typ_idx)
typ_sym = g.table.sym(unwrapped_rec_type)
}
}
if node.from_embed_types.len > 0 && !typ_sym.has_method(node.name) {
unwrapped_rec_type = node.from_embed_types.last()
typ_sym = g.table.sym(unwrapped_rec_type)
}
return unwrapped_rec_type, typ_sym
}
fn (mut g Gen) method_call(node ast.CallExpr) {
// TODO: there are still due to unchecked exprs (opt/some fn arg)
if node.left_type == 0 {
g.checker_bug('CallExpr.left_type is 0 in method_call', node.pos)
}
if node.receiver_type == 0 {
g.checker_bug('CallExpr.receiver_type is 0 in method_call', node.pos)
}
left_type := g.unwrap_generic(node.left_type)
mut unwrapped_rec_type, typ_sym := g.unwrap_receiver_type(node)
rec_cc_type := g.cc_type(unwrapped_rec_type, false)
mut receiver_type_name := util.no_dots(rec_cc_type)
if typ_sym.info is ast.Interface && typ_sym.info.defines_method(node.name) {
// Speaker_name_table[s._interface_idx].speak(s._object)
$if debug_interface_method_call ? {
eprintln('>>> interface typ_sym.name: ${typ_sym.name} | receiver_type_name: ${receiver_type_name} | pos: ${node.pos}')
}
left_cc_type := g.cc_type(g.table.unaliased_type(left_type), false)
left_type_name := util.no_dots(left_cc_type)
g.write('${c_name(left_type_name)}_name_table[')
if node.left.is_auto_deref_var() && left_type.nr_muls() > 1 {
g.write2('(', '*'.repeat(left_type.nr_muls() - 1))
g.expr(node.left)
g.write(')')
} else {
g.expr(node.left)
}
dot := g.dot_or_ptr(left_type)
mname := c_fn_name(node.name)
g.write('${dot}_typ]._method_${mname}(')
if node.left.is_auto_deref_var() && left_type.nr_muls() > 1 {
g.write2('(', '*'.repeat(left_type.nr_muls() - 1))
g.expr(node.left)
g.write(')')
} else {
g.expr(node.left)
}
g.write('${dot}_object')
is_variadic := node.expected_arg_types.len > 0
&& node.expected_arg_types.last().has_flag(.variadic)
if node.args.len > 0 || is_variadic {
g.write(', ')
g.call_args(node)
}
g.write(')')
if !node.return_type.has_option_or_result() {
if g.table.final_sym(node.return_type).kind == .array_fixed {
g.write('.ret_arr')
}
}
return
} else if typ_sym.info is ast.Thread {
waiter_fn_name := g.gen_gohandle_name(typ_sym.info.return_type)
g.create_waiter_handler(node.return_type, g.styp(typ_sym.info.return_type), waiter_fn_name)
}
left_sym := g.table.sym(left_type)
final_left_sym := g.table.final_sym(left_type)
if final_left_sym.kind == .array && !(left_sym.kind == .alias && left_sym.has_method(node.name)) {
if g.gen_array_method_call(node, left_type, final_left_sym) {
return
}
}
if final_left_sym.kind == .array_fixed && !(left_sym.kind == .alias
&& left_sym.has_method(node.name)) {
if g.gen_fixed_array_method_call(node, left_type) {
return
}
}
if final_left_sym.kind == .map && !(left_sym.kind == .alias && left_sym.has_method(node.name)) {
if g.gen_map_method_call(node, left_type, final_left_sym) {
return
}
}
if left_sym.kind == .array_fixed && node.name == 'wait' {
g.gen_fixed_array_wait(node)
return
}
if left_sym.kind in [.sum_type, .interface] {
prefix_name := if left_sym.kind == .sum_type { 'sumtype' } else { 'interface' }
match node.name {
'type_name' {
if left_sym.kind in [.sum_type, .interface] {
g.conversion_function_call('charptr_vstring_literal(v_typeof_${prefix_name}_${typ_sym.cname}',
')', node)
return
}
}
'type_idx' {
if left_sym.kind in [.sum_type, .interface] {
g.conversion_function_call('v_typeof_${prefix_name}_idx_${typ_sym.cname}',
'', node)
return
}
}
else {}
}
}
mut is_free_method := false
if node.name == 'str' {
if g.gen_to_str_method_call(node) {
return
}
} else if node.name == 'free' {
g.register_free_method(node.receiver_type)
is_free_method = true
}
mut cast_n := 0
old_inside_smartcast := g.inside_smartcast
receiver_type_name = g.resolve_receiver_name(node, unwrapped_rec_type, final_left_sym,
left_sym, typ_sym)
mut name := ''
if is_free_method {
free_method_name := g.get_free_method(unwrapped_rec_type)
name = free_method_name
} else {
name = util.no_dots('${receiver_type_name}_${node.name}')
}
if left_sym.kind == .chan && node.name in ['close', 'try_pop', 'try_push'] {
name = 'sync__Channel_${node.name}'
}
mut is_range_slice := false
if node.receiver_type.is_ptr() && !left_type.is_ptr() {
if node.left is ast.IndexExpr {
idx := node.left.index
if idx is ast.RangeExpr {
is_range_slice = true
}
}
}
if node.concrete_types.len > 0 {
mut rec_len := 0
if node.left_type.has_flag(.generic) {
rec_sym := g.table.final_sym(g.unwrap_generic(node.left_type))
match rec_sym.info {
ast.Struct, ast.Interface, ast.SumType {
rec_len += rec_sym.info.generic_types.len
}
else {}
}
}
mut concrete_types := node.concrete_types.map(g.unwrap_generic(it))
if m := g.table.find_method(g.table.sym(node.left_type), node.name) {
mut node_ := unsafe { node }
comptime_args := g.type_resolver.resolve_args(g.cur_fn, m, mut node_, concrete_types)
for k, v in comptime_args {
if (rec_len + k) < concrete_types.len {
if !node.concrete_types[k].has_flag(.generic) {
concrete_types[rec_len + k] = g.unwrap_generic(v)
}
}
}
name = g.generic_fn_name(concrete_types, name)
} else {
name = g.generic_fn_name(concrete_types, name)
}
}
// g.generate_tmp_autofree_arg_vars(node, name)
if !node.receiver_type.is_ptr() && left_type.is_ptr() && node.name == 'str' {
if left_type.is_int_valptr() {
g.write('ptr_str(')
} else {
g.gen_expr_to_string(node.left, left_type)
return
}
} else if node.receiver_type.is_ptr() && left_type.is_ptr() && node.name == 'str'
&& !left_sym.has_method('str') {
g.gen_expr_to_string(node.left, left_type)
return
} else {
if g.cur_fn != unsafe { nil } && g.cur_fn.trace_fns.len > 0 {
g.gen_trace_call(node, name)
g.write('(')
} else {
g.write('${name}(')
}
}
is_interface := left_sym.kind == .interface
&& g.table.sym(node.receiver_type).kind == .interface
if node.receiver_type.is_ptr() && (!left_type.is_ptr()
|| node.from_embed_types.len != 0 || (left_type.has_flag(.shared_f) && node.name != 'str')) {
// The receiver is a reference, but the caller provided a value
// Add `&` automatically.
// TODO: same logic in call_args()
if !is_range_slice {
if !node.left.is_lvalue() {
if node.left.is_as_cast() {
g.inside_smartcast = true
if node.left is ast.SelectorExpr && !left_type.is_ptr() {
g.write('&')
}
} else {
g.write('ADDR(${rec_cc_type}, ')
cast_n++
}
} else if node.left is ast.Ident && g.table.is_interface_smartcast(node.left.obj) {
g.write('ADDR(${rec_cc_type}, ')
cast_n++
} else if !(left_type.has_flag(.shared_f)
&& g.styp(left_type) == g.styp(node.receiver_type)) {
g.write('&')
}
} else {
if !left_type.is_ptr() {
g.write('ADDR(${rec_cc_type}, ')
cast_n++
}
}
} else if !node.receiver_type.is_ptr() && left_type.is_ptr() && node.name != 'str'
&& node.from_embed_types.len == 0 {
if !left_type.has_flag(.shared_f) {
g.write('*'.repeat(left_type.nr_muls()))
}
} else if !is_range_slice && node.from_embed_types.len == 0 && node.name != 'str' {
diff := left_type.nr_muls() - node.receiver_type.nr_muls()
if diff > 0 {
g.write('*'.repeat(diff))
}
}
if g.is_autofree && node.free_receiver && !g.inside_lambda && !g.is_builtin_mod {
// The receiver expression needs to be freed, use the temp var.
fn_name := node.name.replace('.', '_')
arg_name := '_arg_expr_${fn_name}_0_${node.pos.pos}'
g.write('/*af receiver arg*/' + arg_name)
} else {
if node.left is ast.MapInit {
g.write('(map[]){')
g.expr(node.left)
g.write('}[0]')
} else if !is_interface && node.from_embed_types.len > 0 {
n_ptr := node.left_type.nr_muls() - 1
if n_ptr > 0 {
g.write2('(', '*'.repeat(n_ptr))
g.expr(node.left)
g.write(')')
} else {
g.expr(node.left)
}
} else if is_interface && node.from_embed_types.len > 0 {
if g.out.last_n(1) == '&' {
g.go_back(1)
}
if node.receiver_type.is_ptr() && left_type.is_ptr() {
// (main__IFoo*)bar
g.write2('(', g.table.sym(node.from_embed_types.last()).cname)
g.write('*)')
g.expr(node.left)
} else if node.receiver_type.is_ptr() && !left_type.is_ptr() {
// (main__IFoo*)&bar
g.write2('(', g.table.sym(node.from_embed_types.last()).cname)
g.write('*)&')
g.expr(node.left)
} else if !node.receiver_type.is_ptr() && left_type.is_ptr() {
// *((main__IFoo*)bar)
g.write2('*((', g.table.sym(node.from_embed_types.last()).cname)
g.write('*)')
g.expr(node.left)
g.write(')')
} else {
// *((main__IFoo*)&bar)
g.write2('*((', g.table.sym(node.from_embed_types.last()).cname)
g.write('*)&')
g.expr(node.left)
g.write(')')
}
} else {
if is_free_method && !node.receiver_type.is_ptr() {
g.write('&')
}
g.expr(node.left)
}
if !is_interface || node.from_embed_types.len == 0 {
mut node_embed_types := node.from_embed_types.clone()
if node.left is ast.Ident && g.comptime.get_ct_type_var(node.left) == .generic_var {
_, embed_types := g.table.find_method_from_embeds(final_left_sym, node.name) or {
ast.Fn{}, []ast.Type{}
}
if embed_types.len > 0 {
node_embed_types = embed_types.clone()
}
}
for i, embed in node_embed_types {
embed_sym := g.table.sym(embed)
embed_name := embed_sym.embed_name()
is_left_ptr := if i == 0 {
left_type.is_ptr()
} else {
node_embed_types[i - 1].is_ptr()
}
if is_left_ptr {
g.write('->')
} else {
g.write('.')
}
g.write(embed_name)
}
}
if left_type.has_flag(.shared_f) && g.styp(left_type) != g.styp(node.receiver_type) {
g.write('->val')
}
}
if cast_n > 0 {
g.write(')'.repeat(cast_n))
}
is_variadic := node.expected_arg_types.len > 0
&& node.expected_arg_types.last().has_flag(.variadic)
if node.args.len > 0 || is_variadic {
g.write(', ')
}
g.inside_smartcast = old_inside_smartcast
g.call_args(node)
g.write(')')
if node.return_type != 0 && !node.return_type.has_option_or_result()
&& g.table.final_sym(node.return_type).kind == .array_fixed {
// it's non-option fixed array, requires accessing .ret_arr member to get the array
g.write('.ret_arr')
}
}
fn (mut g Gen) fn_call(node ast.CallExpr) {
// call struct field with fn type
// TODO: test node.left instead
// left & left_type will be `x` and `x type` in `x.fieldfn()`
// will be `0` for `foo()`
mut is_interface_call := false
mut is_selector_call := false
if node.is_method && node.left_type != 0 {
mut fn_typ := ast.no_type
left_sym := g.table.sym(node.left_type)
if node.is_field {
if field := g.table.find_field_with_embeds(left_sym, node.name) {
fn_typ = field.typ
}
if node.is_unwrapped_fn_selector {
fn_typ = fn_typ.clear_option_and_result()
}
}
if left_sym.kind == .interface || fn_typ.is_ptr() {
is_interface_call = true
g.write('(*')
}
if node.is_unwrapped_fn_selector {
callback_sym := g.table.final_sym(fn_typ)
if callback_sym.info is ast.FnType {
g.write('(*(${g.styp(fn_typ)}*)')
}
}
g.expr(node.left)
if node.left_type.is_ptr() {
g.write('->')
} else {
g.write('.')
}
for embed in node.from_embed_types {
embed_sym := g.table.sym(embed)
embed_name := embed_sym.embed_name()
g.write(embed_name)
if embed.is_ptr() {
g.write('->')
} else {
g.write('.')
}
}
is_selector_call = true
}
mut node_name := node.name // name to find on fn table
mut name := node.name
if node.is_static_method {
// resolve static call T.name()
if g.cur_fn != unsafe { nil } {
_, name = g.table.convert_generic_static_type_name(node.name, g.cur_fn.generic_names,
g.cur_concrete_types)
if node.concrete_types.len > 0 {
// Resolves T.from() to real symbol name to search on fn table
node_name = name
}
}
}
is_print := name in ['print', 'println', 'eprint', 'eprintln', 'panic']
print_method := name
is_json_encode := name == 'json.encode'
is_json_encode_pretty := name == 'json.encode_pretty'
is_json_decode := name == 'json.decode'
is_json_fn := is_json_encode || is_json_encode_pretty || is_json_decode
is_va_arg := name == 'C.va_arg'
mut json_type_str := ''
mut json_obj := ''
if is_json_fn {
g.is_json_fn = true
json_obj = g.new_tmp_var()
mut tmp2 := ''
cur_line := g.go_before_last_stmt()
if is_json_encode || is_json_encode_pretty {
g.gen_json_for_type(node.args[0].typ)
json_type_str = g.styp(node.args[0].typ)
// `json__encode` => `json__encode_User`
encode_name := js_enc_name(json_type_str)
g.empty_line = true
g.writeln('// json.encode')
g.write('cJSON* ${json_obj} = ${encode_name}(')
g.call_args(node)
g.writeln(');')
tmp2 = if g.is_autofree {
'_arg_expr_${node.name.replace('.', '_')}_${node.pos.pos}'
} else {
g.new_tmp_var()
}
if is_json_encode {
g.writeln('string ${tmp2} = json__json_print(${json_obj});')
} else {
g.writeln('string ${tmp2} = json__json_print_pretty(${json_obj});')
}
} else {
ast_type := node.args[0].expr as ast.TypeNode
// `json.decode(User, s)` => json.decode_User(s)
typ := c_name(g.styp(ast_type.typ))
fn_name := c_fn_name(name) + '_' + typ
g.gen_json_for_type(ast_type.typ)
g.empty_line = true
g.writeln('// json.decode')
g.write('cJSON* ${json_obj} = json__json_parse(')
// Skip the first argument in json.decode which is a type
// its name was already used to generate the function call
g.is_js_call = true
g.call_args(node)
g.writeln(');')
tmp2 = g.new_tmp_var()
g.writeln('${result_name}_${typ} ${tmp2} = ${fn_name}(${json_obj});')
}
if !g.is_autofree {
g.write('cJSON_Delete(${json_obj}); // del')
}
g.write('\n${cur_line}')
name = ''
json_obj = tmp2
} else if is_va_arg {
ast_type := node.args[0].expr as ast.TypeNode
typ := g.styp(ast_type.typ)
g.write('va_arg(')
g.expr(node.args[1].expr)
g.write(', ${typ})')
return
}
if name == '__addr' {
name = '&'
}
if node.language == .c {
// Skip "C."
name = util.no_dots(name[2..])
} else {
name = if is_selector_call { c_name(name) } else { c_fn_name(name) }
}
if g.pref.translated || g.file.is_translated || node.is_file_translated {
// For `@[c: 'P_TryMove'] fn p_trymove( ... `
// every time `p_trymove` is called, `P_TryMove` must be generated instead.
if f := g.table.find_fn(node.name) {
// TODO: PERF fn lookup for each fn call in translated mode
if cattr := f.attrs.find_first('c') {
name = cattr.arg
}
}
}
if !is_selector_call {
if func := g.table.find_fn(node_name) {
mut concrete_types := node.concrete_types.map(g.unwrap_generic(it))
mut node_ := unsafe { node }
comptime_args := g.type_resolver.resolve_args(g.cur_fn, func, mut node_, concrete_types)
if concrete_types.len > 0 {
for k, v in comptime_args {
if k < concrete_types.len {
if !node.concrete_types[k].has_flag(.generic) {
concrete_types[k] = g.unwrap_generic(v)
}
}
}
name = g.generic_fn_name(concrete_types, name)
name = name.replace_each(c_fn_name_escape_seq)
}
}
}
if node.is_fn_a_const {
name = g.c_const_name(node.const_name.replace('.', '__'))
}
// TODO2
// cgen shouldn't modify ast nodes, this should be moved
// g.generate_tmp_autofree_arg_vars(node, name)
// Handle `print(x)`
mut print_auto_str := false
if is_print && (node.args[0].typ != ast.string_type
|| g.comptime.comptime_for_method != unsafe { nil } || node.args[0].ct_expr) {
g.inside_interface_deref = true
defer {
g.inside_interface_deref = false
}
mut typ := g.type_resolver.get_type_or_default(node.args[0].expr, node.args[0].typ)
if typ == 0 {
g.checker_bug('print arg.typ is 0', node.pos)
}
if typ != ast.string_type || g.comptime.comptime_for_method != unsafe { nil } {
expr := node.args[0].expr
typ_sym := g.table.sym(typ)
if typ_sym.kind == .interface && (typ_sym.info as ast.Interface).defines_method('str') {
g.write('${c_fn_name(print_method)}(')
rec_type_name := util.no_dots(g.cc_type(typ, false))
g.write('${c_name(rec_type_name)}_name_table[')
g.expr(expr)
dot := if typ.is_ptr() { '->' } else { '.' }
g.write('${dot}_typ]._method_str(')
g.expr(expr)
g.write('${dot}_object')
g.writeln('));')
return
}
if g.is_autofree && !typ.has_option_or_result() {
// Create a temporary variable so that the value can be freed
tmp := g.new_tmp_var()
g.write('string ${tmp} = ')
g.gen_expr_to_string(expr, typ)
g.writeln('; ${c_fn_name(print_method)}(${tmp}); string_free(&${tmp});')
} else {
g.write('${c_fn_name(print_method)}(')
if expr is ast.ComptimeSelector {
if expr.typ_key != '' {
typ = g.type_resolver.get_ct_type_or_default(expr.typ_key, typ)
}
} else if expr is ast.ComptimeCall {
if expr.kind == .method {
sym := g.table.sym(g.unwrap_generic(expr.left_type))
if m := sym.find_method(g.comptime.comptime_for_method.name) {
typ = m.return_type
}
}
} else if expr is ast.Ident && expr.obj is ast.Var {
typ = expr.obj.typ
if expr.obj.smartcasts.len > 0 {
typ = g.unwrap_generic(expr.obj.smartcasts.last())
cast_sym := g.table.sym(typ)
if cast_sym.info is ast.Aggregate {
typ = cast_sym.info.types[g.aggregate_type_idx]
} else if expr.obj.ct_type_var == .smartcast {
typ = g.unwrap_generic(g.type_resolver.get_type(expr))
}
}
// handling println( var or { ... })
if typ.has_flag(.option) && expr.or_expr.kind != .absent {
typ = typ.clear_flag(.option)
}
}
g.gen_expr_to_string(expr, typ)
g.write(')')
}
print_auto_str = true
}
}
if !print_auto_str {
if is_print {
g.inside_interface_deref = true
defer {
g.inside_interface_deref = false
}
}
if g.pref.is_debug && node.name == 'panic' {
paline, pafile, pamod, pafn := g.panic_debug_info(node.pos)
g.write('panic_debug(${paline}, tos3("${pafile}"), tos3("${pamod}"), tos3("${pafn}"), ')
g.call_args(node)
g.write(')')
} else if node.name.ends_with('__static__from_string') && !g.table.known_fn(node.name) {
mod_enum_name, idx := g.get_enum_type_idx_from_fn_name(node.name)
fn_mod := mod_enum_name.all_before_last('.')
full_fn_name := '${fn_mod}.${node.name}'
fn_name := util.no_dots(full_fn_name)
lock g.str_fn_names {
if fn_name !in g.str_fn_names {
g.gen_enum_static_from_string(fn_name, mod_enum_name, idx)
g.str_fn_names << fn_name
}
}
g.write('${fn_name}(')
g.call_args(node)
g.write(')')
} else {
// Simple function call
// if free_tmp_arg_vars {
// g.writeln(';')
// g.write(cur_line + ' /* <== af cur line*/')
// }
mut is_fn_var := false
if obj := node.scope.find_var(node.name) {
// Temp fix generate call fn error when the struct type of sumtype
// has the fn field and is same to the struct name.
mut is_cast_needed := true
if node.is_method && node.left_type != 0 {
left_sym := g.table.sym(node.left_type)
if left_sym.kind == .struct && node.name == obj.name {
is_cast_needed = false
}
}
if obj.smartcasts.len > 0 && is_cast_needed {
for typ in obj.smartcasts {
sym := g.table.sym(g.unwrap_generic(typ))
if obj.orig_type.has_flag(.option) && sym.kind == .function {
g.write('(*(${sym.cname}*)(')
} else {
g.write('(*(${sym.cname})(')
}
}
for i, typ in obj.smartcasts {
cast_sym := g.table.sym(g.unwrap_generic(typ))
mut is_ptr := false
if i == 0 {
if obj.is_inherited {
g.write(closure_ctx + '->' + c_name(node.name))
} else {
g.write(node.name)
}
if obj.orig_type.is_ptr() {
is_ptr = true
}
}
dot := if is_ptr { '->' } else { '.' }
if cast_sym.info is ast.Aggregate {
sym := g.table.sym(cast_sym.info.types[g.aggregate_type_idx])
g.write('${dot}_${sym.cname}')
} else if cast_sym.kind == .function && obj.orig_type.has_flag(.option) {
g.write('.data')
} else {
g.write('${dot}_${cast_sym.cname}')
}
g.write('))')
}
is_fn_var = true
} else if obj.is_inherited {
g.write(closure_ctx + '->' + c_name(node.name))
is_fn_var = true
}
}
if !is_fn_var {
if g.cur_fn != unsafe { nil } && g.cur_fn.trace_fns.len > 0 {
g.gen_trace_call(node, name)
if node.is_fn_var {
return
}
} else {
g.write(g.get_ternary_name(name))
}
}
if node.is_unwrapped_fn_selector {
g.write('.data)')
}
if is_interface_call {
g.write(')')
}
mut tmp_cnt_save := -1
if name != '&' {
g.write('(')
}
if is_json_fn {
g.write(json_obj)
} else {
if node.is_keep_alive
&& g.pref.gc_mode in [.boehm_full, .boehm_incr, .boehm_full_opt, .boehm_incr_opt] {
cur_line := g.go_before_last_stmt()
tmp_cnt_save = g.keep_alive_call_pregen(node)
g.write(cur_line)
for i in 0 .. node.args.len {
if i > 0 {
g.write(', ')
}
g.write('__tmp_arg_${tmp_cnt_save + i}')
}
} else {
g.call_args(node)
}
}
if name != '&' {
g.write(')')
}
if node.return_type != 0 && !node.return_type.has_option_or_result()
&& g.table.final_sym(node.return_type).kind == .array_fixed {
// it's non-option fixed array, requires accessing .ret_arr member to get the array
g.write('.ret_arr')
}
if tmp_cnt_save >= 0 {
g.writeln(';')
g.keep_alive_call_postgen(node, tmp_cnt_save)
}
}
}
g.is_json_fn = false
}
// gen_trace_call generates call to the wrapper trace fn if the call is traceable
fn (mut g Gen) gen_trace_call(node ast.CallExpr, name string) {
hash_fn, _ := g.table.get_trace_fn_name(g.cur_fn, node)
if _ := g.cur_fn.trace_fns[hash_fn] {
g.write(c_name(hash_fn))
if node.is_fn_var {
g.write('(${node.name})')
}
} else {
g.write(g.get_ternary_name(name))
}
}
fn (mut g Gen) autofree_call_pregen(node ast.CallExpr) {
// g.writeln('// autofree_call_pregen()')
// Create a temporary var before fn call for each argument in order to free it (only if it's a complex expression,
// like `foo(get_string())` or `foo(a + b)`
mut free_tmp_arg_vars := g.is_autofree && !g.is_builtin_mod && node.args.len > 0
&& !node.args[0].typ.has_option_or_result() // TODO: copy pasta checker.v
if !free_tmp_arg_vars {
return
}
if g.is_js_call {
return
}
if g.inside_const {
return
}
free_tmp_arg_vars = false // set the flag to true only if we have at least one arg to free
g.tmp_count_af++
mut scope := g.file.scope.innermost(node.pos.pos)
// prepend the receiver for now (TODO turn the receiver into a CallArg everywhere?)
mut args := [
ast.CallArg{
typ: node.receiver_type
expr: node.left
is_tmp_autofree: node.free_receiver
},
]
args << node.args
for i, arg in args {
if !arg.is_tmp_autofree {
if arg.expr is ast.CallExpr && arg.expr.name in ['json.encode', 'json.encode_pretty'] {
t := '_arg_expr_${arg.expr.name.replace('.', '_')}_${arg.expr.pos.pos}'
defer {
g.writeln(';\n\tstring_free(&${t});')
}
}
continue
}
if arg.expr is ast.CallExpr {
// Any argument can be an expression that has to be freed. Generate a tmp expression
// for each of those recursively.
g.autofree_call_pregen(arg.expr)
}
free_tmp_arg_vars = true
fn_name := node.name.replace('.', '_') // can't use name...
t := '_arg_expr_${fn_name}_${i}_${node.pos.pos}'
used := false // scope.known_var(t)
mut s := '${t} = '
if used {
// This means this tmp var name was already used (the same function was called and
// `_arg_fnname_1` was already generated).
// We do not need to declare this variable again, so just generate `t = ...`
// instead of `string t = ...`, and we need to mark this variable as unused,
// so that it's freed after the call. (Used tmp arg vars are not freed to avoid double frees).
if mut x := scope.find_var(t) {
x.is_used = false
}
s = '${t} = '
} else {
scope.register(ast.Var{
name: t
typ: ast.string_type
is_autofree_tmp: true
pos: node.pos
})
s = 'string ${t} = '
}
s += g.expr_string(arg.expr)
s += ';// new af2 pre'
g.strs_to_free0 << s
// This tmp arg var will be freed with the rest of the vars at the end of the scope.
}
}
fn (mut g Gen) call_args(node ast.CallExpr) {
g.expected_fixed_arr = true
defer {
g.expected_fixed_arr = false
}
args := if g.is_js_call {
if node.args.len < 1 {
g.error('node should have at least 1 arg', node.pos)
}
g.is_js_call = false
node.args[1..]
} else {
node.args
}
mut expected_types := node.expected_arg_types.map(g.unwrap_generic(it))
// unwrap generics fn/method arguments to concretes
if node.concrete_types.len > 0 && node.concrete_types.all(!it.has_flag(.generic)) {
if node.is_method {
if func := g.table.find_method(g.table.sym(node.left_type), node.name) {
if func.generic_names.len > 0 {
for i in 0 .. expected_types.len {
mut muttable := unsafe { &ast.Table(g.table) }
if utyp := muttable.convert_generic_type(node.expected_arg_types[i],
func.generic_names, node.concrete_types)
{
expected_types[i] = utyp
}
}
}
}
} else {
if func := g.table.find_fn(node.name) {
if func.generic_names.len > 0 {
for i in 0 .. expected_types.len {
mut muttable := unsafe { &ast.Table(g.table) }
if utyp := muttable.convert_generic_type(node.expected_arg_types[i],
func.generic_names, node.concrete_types)
{
expected_types[i] = utyp
}
}
}
}
}
}
// only v variadic, C variadic args will be appended like normal args
is_variadic := expected_types.len > 0 && expected_types.last().has_flag(.variadic)
&& node.language == .v
mut already_decomposed := false
for i, arg in args {
if is_variadic && i == expected_types.len - 1 {
break
}
mut is_smartcast := false
if arg.expr is ast.Ident {
if arg.expr.obj is ast.Var {
if i < node.expected_arg_types.len && node.expected_arg_types[i].has_flag(.generic)
&& arg.expr.obj.ct_type_var !in [.generic_param, .no_comptime] {
exp_option := node.expected_arg_types[i].has_flag(.option)
expected_types[i] = g.unwrap_generic(g.type_resolver.get_type(arg.expr))
if !exp_option {
expected_types[i] = expected_types[i].clear_flag(.option)
}
} else if arg.expr.obj.smartcasts.len > 0 {
exp_sym := g.table.sym(expected_types[i])
orig_sym := g.table.sym(arg.expr.obj.orig_type)
if orig_sym.kind != .interface && (exp_sym.kind != .sum_type
&& expected_types[i] != arg.expr.obj.orig_type) {
expected_types[i] = g.unwrap_generic(arg.expr.obj.smartcasts.last())
cast_sym := g.table.sym(expected_types[i])
if cast_sym.info is ast.Aggregate {
expected_types[i] = cast_sym.info.types[g.aggregate_type_idx]
}
is_smartcast = true
}
}
}
} else if arg.expr is ast.ArrayDecompose {
mut d_count := 0
for d_i in i .. expected_types.len {
g.write('*(${g.styp(expected_types[d_i])}*)array_get(')
g.expr(arg.expr)
g.write(', ${d_count})')
if d_i < expected_types.len - 1 {
g.write(', ')
}
d_count++
}
already_decomposed = true
continue
} else if arg.expr is ast.ComptimeSelector && i < node.expected_arg_types.len
&& node.expected_arg_types[i].has_flag(.generic) {
exp_option := node.expected_arg_types[i].has_flag(.option)
expected_types[i] = g.unwrap_generic(g.type_resolver.get_type(arg.expr))
if !exp_option {
expected_types[i] = expected_types[i].clear_flag(.option)
}
} else if arg.expr is ast.CallExpr {
if arg.expr.nr_ret_values > 1 {
line := g.go_before_last_stmt().trim_space()
g.empty_line = true
ret_type := arg.expr.return_type
tmp_var := g.new_tmp_var()
g.write('${g.styp(ret_type)} ${tmp_var} = ')
g.expr(arg.expr)
g.writeln(';')
g.write(line)
for n in 0 .. arg.expr.nr_ret_values {
if n != arg.expr.nr_ret_values - 1 || i != args.len - 1 {
g.write('${tmp_var}.arg${n}, ')
} else {
g.write('${tmp_var}.arg${n}')
}
}
continue
}
}
use_tmp_var_autofree := g.is_autofree && arg.typ == ast.string_type && arg.is_tmp_autofree
&& !g.inside_const && !g.is_builtin_mod
// g.write('/* af=$arg.is_tmp_autofree */')
// some c fn definitions dont have args (cfns.v) or are not updated in checker
// when these are fixed we wont need this check
if i < expected_types.len {
if use_tmp_var_autofree {
if arg.is_tmp_autofree { // && !g.is_js_call {
// We saved expressions in temp variables so that they can be freed later.
// `foo(str + str2) => x := str + str2; foo(x); x.free()`
// g.write('_arg_expr_${g.called_fn_name}_$i')
// Use these variables here.
fn_name := node.name.replace('.', '_')
// name := '_tt${g.tmp_count_af}_arg_expr_${fn_name}_$i'
name := '_arg_expr_${fn_name}_${i + 1}_${node.pos.pos}'
g.write('/*autofree arg*/' + name)
}
} else {
g.ref_or_deref_arg(arg, expected_types[i], node.language, is_smartcast)
}
} else {
if use_tmp_var_autofree {
n := if node.name == 'json.decode' { i + 2 } else { i + 1 }
// TODO: copypasta, move to an inline fn
fn_name := node.name.replace('.', '_')
name := '_arg_expr_${fn_name}_${n}_${node.pos.pos}'
g.write('/*af arg2*/' + name)
} else {
g.expr(arg.expr)
}
}
if i < args.len - 1 || is_variadic {
g.write(', ')
}
}
arg_nr := expected_types.len - 1
if is_variadic {
varg_type := expected_types.last()
variadic_count := args.len - arg_nr
arr_sym := g.table.sym(varg_type)
mut arr_info := arr_sym.info as ast.Array
if varg_type.has_flag(.generic) {
if node.is_method {
left_sym := g.table.sym(node.left_type)
if fn_def := left_sym.find_method_with_generic_parent(node.name) {
mut muttable := unsafe { &ast.Table(g.table) }
if utyp := muttable.convert_generic_type(arr_info.elem_type, fn_def.generic_names,
node.concrete_types)
{
arr_info.elem_type = utyp
}
} else {
g.error('unable to find method ${node.name}', node.pos)
}
} else {
if fn_def := g.table.find_fn(node.name) {
mut muttable := unsafe { &ast.Table(g.table) }
if utyp := muttable.convert_generic_type(arr_info.elem_type, fn_def.generic_names,
node.concrete_types)
{
arr_info.elem_type = utyp
}
} else {
g.error('unable to find function ${node.name}', node.pos)
}
}
}
elem_type := g.styp(arr_info.elem_type)
if (g.pref.translated || g.file.is_translated) && args.len == 1 {
// Handle `foo(c'str')` for `fn foo(args ...&u8)`
// TODOC2V handle this in a better place
g.expr(args[0].expr)
} else if args.len > 0 && args.last().expr is ast.ArrayDecompose {
if !already_decomposed {
g.expr(args.last().expr)
}
} else {
if variadic_count > 0 {
if g.pref.translated || g.file.is_translated {
// Handle passing e.g. C string literals to `...` C varargs:
// void DEH_snprintf(char *buffer, size_t len, const char *fmt, ...)
// deh_snprintf(buffer, 9, c'STCFN%.3d', j++)
for j in arg_nr .. args.len {
g.expr(args[j].expr)
if j < args.len - 1 {
g.write(', ')
}
}
} else {
// passing variadic arg to another call which expects same array type
if args.len == 1
&& ((args[arg_nr].typ.has_flag(.variadic) && args[arg_nr].typ == varg_type)
|| (varg_type.has_flag(.variadic)
&& args[arg_nr].typ == varg_type.clear_flag(.variadic))) {
g.ref_or_deref_arg(args[arg_nr], arr_info.elem_type, node.language,
false)
} else {
noscan := g.check_noscan(arr_info.elem_type)
g.write('new_array_from_c_array${noscan}(${variadic_count}, ${variadic_count}, sizeof(${elem_type}), _MOV((${elem_type}[${variadic_count}]){')
for j in arg_nr .. args.len {
g.ref_or_deref_arg(args[j], arr_info.elem_type, node.language,
false)
if j < args.len - 1 {
g.write(', ')
}
}
g.write('}))')
}
}
} else {
g.write('__new_array(0, 0, sizeof(${elem_type}))')
}
}
}
}
// similar to `autofree_call_pregen()` but only to to handle [keep_args_alive] for C functions
fn (mut g Gen) keep_alive_call_pregen(node ast.CallExpr) int {
g.empty_line = true
g.writeln('// keep_alive_call_pregen()')
// reserve the next tmp_vars for arguments
tmp_cnt_save := g.tmp_count + 1
g.tmp_count += node.args.len
for i, arg in node.args {
// save all arguments in temp vars (not only pointers) to make sure the
// evaluation order is preserved
expected_type := node.expected_arg_types[i]
typ_sym := g.table.sym(expected_type)
typ := g.styp(expected_type)
if typ_sym.kind != .array_fixed {
g.write('${typ} __tmp_arg_${tmp_cnt_save + i} = ')
g.ref_or_deref_arg(arg, expected_type, node.language, false)
} else {
g.writeln('${typ} __tmp_arg_${tmp_cnt_save + i} = {0};')
g.write('memcpy(&__tmp_arg_${tmp_cnt_save + i}, ')
g.ref_or_deref_arg(arg, expected_type, node.language, false)
g.writeln(', sizeof(${typ}));')
}
g.writeln(';')
}
g.empty_line = false
return tmp_cnt_save
}
fn (mut g Gen) keep_alive_call_postgen(node ast.CallExpr, tmp_cnt_save int) {
g.writeln('// keep_alive_call_postgen()')
for i, expected_type in node.expected_arg_types {
if expected_type.is_any_kind_of_pointer() {
g.writeln('GC_reachable_here(__tmp_arg_${tmp_cnt_save + i});')
}
}
}
@[inline]
fn (mut g Gen) ref_or_deref_arg(arg ast.CallArg, expected_type ast.Type, lang ast.Language, is_smartcast bool) {
mut arg_typ := if arg.ct_expr {
g.unwrap_generic(g.type_resolver.get_type(arg.expr))
} else {
g.unwrap_generic(arg.typ)
}
arg_sym := g.table.sym(arg_typ)
exp_is_ptr := expected_type.is_any_kind_of_pointer()
arg_is_ptr := arg_typ.is_any_kind_of_pointer()
if expected_type == 0 {
g.checker_bug('ref_or_deref_arg expected_type is 0', arg.pos)
}
old_expected_arg_mut := g.expected_arg_mut
g.expected_arg_mut = arg.is_mut
defer {
g.expected_arg_mut = old_expected_arg_mut
}
exp_sym := g.table.sym(expected_type)
mut needs_closing := false
old_inside_smartcast := g.inside_smartcast
if arg.is_mut && !exp_is_ptr {
g.write('&/*mut*/')
} else if arg.is_mut && arg_typ.is_ptr() && expected_type.is_ptr()
&& g.table.sym(arg_typ).kind == .struct && expected_type == arg_typ.ref() {
if arg.expr is ast.PrefixExpr && arg.expr.op == .amp {
g.arg_no_auto_deref = true
g.expr(arg.expr)
g.arg_no_auto_deref = false
} else {
g.write('&/*mut*/')
g.expr(arg.expr)
}
return
} else if exp_is_ptr && !arg_is_ptr && !(arg_sym.kind == .alias
&& g.table.unaliased_type(arg_typ).is_pointer() && expected_type.is_pointer()) {
if arg.is_mut {
if exp_sym.kind == .array {
if (arg.expr is ast.Ident && arg.expr.kind in [.global, .variable])
|| arg.expr is ast.SelectorExpr {
g.write('&')
if expected_type.has_flag(.option_mut_param_t) {
g.expr_with_opt(arg.expr, arg_typ, expected_type)
} else {
g.expr(arg.expr)
}
} else {
// Special case for mutable arrays. We can't `&` function
// results, have to use `(array[]){ expr }[0]` hack.
g.write('&(array[]){')
g.expr(arg.expr)
g.write('}[0]')
}
return
} else if arg_sym.kind == .sum_type && exp_sym.kind == .sum_type
&& arg.expr in [ast.Ident, ast.SelectorExpr] {
g.write('&')
g.expr(arg.expr)
return
} else if arg_sym.kind == .interface && exp_sym.kind == .interface
&& arg.expr in [ast.Ident, ast.SelectorExpr] {
g.write('&')
g.expr(arg.expr)
return
}
}
if !g.is_json_fn {
if arg_typ == 0 {
g.checker_bug('ref_or_deref_arg arg.typ is 0', arg.pos)
}
arg_typ_sym := g.table.sym(arg_typ)
expected_deref_type := if expected_type.is_ptr() {
expected_type.deref()
} else {
expected_type
}
deref_sym := g.table.sym(expected_deref_type)
if arg_typ_sym.kind != .function && deref_sym.kind !in [.sum_type, .interface]
&& lang != .c {
if arg.expr.is_lvalue() {
if expected_type.has_flag(.option) {
if expected_type.has_flag(.option_mut_param_t) {
g.write('(${g.styp(expected_type)})&')
}
g.expr_with_opt(arg.expr, arg_typ, expected_type)
return
} else if arg.expr is ast.Ident && arg.expr.language == .c {
g.write('(voidptr)')
} else if !(!arg.is_mut && arg_sym.kind == .alias
&& g.table.unaliased_type(arg_typ).is_any_kind_of_pointer()) {
g.write('(voidptr)&')
}
} else {
mut atype := expected_deref_type
if atype.has_flag(.generic) {
atype = g.unwrap_generic(atype)
}
if atype.has_flag(.generic) || arg.expr is ast.StructInit {
g.write('(voidptr)&')
} else if arg.expr is ast.None {
g.expr_with_opt(arg.expr, arg_typ, expected_type)
return
} else if arg.expr.is_literal() {
g.write('(voidptr)ADDR(${g.styp(arg_typ)}, ')
g.expr(arg.expr)
g.write(')')
return
} else {
if arg_typ_sym.kind in [.sum_type, .interface] {
atype = arg_typ
}
if arg.expr.is_as_cast() {
g.inside_smartcast = true
} else if arg_typ_sym.is_int() && arg.expr !is ast.CastExpr {
g.write('(voidptr)&')
} else {
g.write('ADDR(${g.styp(atype)}, ')
needs_closing = true
}
}
}
} else if arg_sym.kind == .sum_type && exp_sym.kind == .sum_type {
// Automatically passing sum types by reference if the argument expects it,
// not only the argument is mutable.
if arg.expr is ast.SelectorExpr {
g.write('&')
g.expr(arg.expr)
return
} else if arg.expr is ast.CastExpr {
g.write('ADDR(${g.styp(expected_deref_type)}, ')
g.expr_with_cast(arg.expr, arg_typ, expected_type)
g.write(')')
return
}
} else if arg_sym.kind == .interface && exp_sym.kind == .interface {
if exp_is_ptr && !arg_is_ptr {
g.write('&')
}
}
}
} else if arg_typ.has_flag(.shared_f) && !expected_type.has_flag(.shared_f) {
if expected_type.is_ptr() {
g.write('&')
}
g.expr(arg.expr)
g.write('->val')
return
} else if expected_type.has_flag(.option) {
if expected_type.has_flag(.option_mut_param_t)
&& arg_typ.nr_muls() <= expected_type.nr_muls() && !(arg.expr is ast.Ident
&& (arg.expr.obj is ast.Var && arg.expr.obj.is_inherited)) {
g.write('&')
}
if (arg_sym.info is ast.Alias || exp_sym.info is ast.Alias) && expected_type != arg_typ {
g.expr_opt_with_alias(arg.expr, arg_typ, expected_type)
} else {
if arg.expr is ast.Ident && arg.expr.obj is ast.Var {
if arg.expr.obj.smartcasts.len > 0 {
arg_typ = arg.expr.obj.smartcasts.last()
}
}
g.expr_with_opt(arg.expr, arg_typ, expected_type)
}
return
} else if arg.expr is ast.ArrayInit {
if arg.expr.is_fixed {
if !arg.expr.has_index {
g.write('(${g.styp(arg.expr.typ)})')
}
}
} else if arg.expr is ast.ComptimeSelector && arg_typ.has_flag(.option)
&& !expected_type.has_flag(.option) {
// allow to pass val.$(filed.name) where T is expected, doing automatic unwrap in this case
styp := g.base_type(arg_typ)
g.write('*(${styp}*)')
g.expr_with_cast(arg.expr, arg_typ, expected_type)
g.write('.data')
return
} else if arg.expr is ast.Ident && arg_sym.info is ast.Struct && arg_sym.info.is_anon
&& !expected_type.has_flag(.generic) {
// make anon struct struct compatible with another anon struct declaration
g.write('*(${g.cc_type(expected_type, false)}*)&')
}
// check if the argument must be dereferenced or not
g.arg_no_auto_deref = is_smartcast && !arg_is_ptr && !exp_is_ptr && arg.should_be_ptr
g.expr_with_cast(arg.expr, arg_typ, expected_type)
g.arg_no_auto_deref = false
g.inside_smartcast = old_inside_smartcast
if needs_closing {
g.write(')')
}
}
fn (mut g Gen) is_gui_app() bool {
match g.pref.subsystem {
.windows { return true }
.console { return false }
.auto {}
}
if g.pref.os == .windows {
if g.force_main_console {
return false
}
for cf in g.table.cflags {
if cf.value.to_lower_ascii() == 'gdi32' {
return true
}
}
}
return false
}
fn (g &Gen) fileis(s string) bool {
return g.file.path.contains(s)
}
fn (mut g Gen) write_fn_attrs(attrs []ast.Attr) string {
mut fn_attrs := ''
for attr in attrs {
match attr.name {
'inline' {
g.write('inline ')
}
'noinline' {
// since these are supported by GCC, clang and MSVC, we can consider them officially supported.
g.write('__NOINLINE ')
}
'weak' {
if attrs.any(it.name == 'export') {
// only the exported wrapper should be weak; otherwise x86_64-w64-mingw32-gcc complains
continue
}
// a `@[weak]` tag tells the C compiler, that the next declaration will be weak, i.e. when linking,
// if there is another declaration of a symbol with the same name (a 'strong' one), it should be
// used instead, *without linker errors about duplicate symbols*.
g.write('VWEAK ')
}
'noreturn' {
// a `@[noreturn]` tag tells the compiler, that a function
// *DOES NOT RETURN* to its callsites.
// See: https://en.cppreference.com/w/c/language/_Noreturn
// Such functions should have no return type. They can be used
// in places where `panic(err)` or `exit(0)` can be used.
// panic/1 and exit/0 themselves will also be marked as
// `@[noreturn]` soon.
// These functions should have busy `for{}` loops injected
// at their end, when they do not end by calling other fns
// marked by `@[noreturn]`.
g.write('VNORETURN ')
}
'irq_handler' {
g.write('__IRQHANDLER ')
}
'_cold' {
// GCC/clang attributes
// prefixed by _ to indicate they're for advanced users only and not really supported by V.
// source for descriptions: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
// The cold attribute on functions is used to inform the compiler that the function is unlikely
// to be executed. The function is optimized for size rather than speed and on many targets it
// is placed into a special subsection of the text section so all cold functions appear close
// together, improving code locality of non-cold parts of program.
g.write('__attribute__((cold)) ')
}
'_constructor' {
// The constructor attribute causes the function to be called automatically before execution
// enters main ().
g.write('__attribute__((constructor)) ')
}
'_destructor' {
// The destructor attribute causes the function to be called automatically after main ()
// completes or exit () is called.
g.write('__attribute__((destructor)) ')
}
'_flatten' {
// Generally, inlining into a function is limited. For a function marked with this attribute,
// every call inside this function is inlined, if possible.
g.write('__attribute__((flatten)) ')
}
'_hot' {
// The hot attribute on a function is used to inform the compiler that the function is a hot
// spot of the compiled program.
g.write('__attribute__((hot)) ')
}
'_malloc' {
// This tells the compiler that a function is malloc-like, i.e., that the pointer P returned by
// the function cannot alias any other pointer valid when the function returns, and moreover no
// pointers to valid objects occur in any storage addressed by P.
g.write('__attribute__((malloc)) ')
}
'_pure' {
// Calls to functions whose return value is not affected by changes to the observable state
// of the program and that have no observable effects on such state other than to return a
// value may lend themselves to optimizations such as common subexpression elimination.
// Declaring such functions with the const attribute allows GCC to avoid emitting some calls in
// repeated invocations of the function with the same argument values.
g.write('__attribute__((const)) ')
}
'_naked' {
g.write('__attribute__((naked)) ')
}
'windows_stdcall' {
// windows attributes (msvc/mingw)
// prefixed by windows to indicate they're for advanced users only and not really supported by V.
fn_attrs += call_convention_attribute('stdcall', g.is_cc_msvc)
}
'_fastcall' {
fn_attrs += call_convention_attribute('fastcall', g.is_cc_msvc)
}
'callconv' {
fn_attrs += call_convention_attribute(attr.arg, g.is_cc_msvc)
}
'console' {
g.force_main_console = true
}
else {
// nothing but keep V happy
}
}
}
return fn_attrs
}
fn call_convention_attribute(cconvention string, is_cc_msvc bool) string {
return if is_cc_msvc { '__${cconvention} ' } else { '__attribute__((${cconvention})) ' }
}