mirror of
https://github.com/vlang/v.git
synced 2025-09-13 14:32:26 +03:00
1178 lines
29 KiB
V
1178 lines
29 KiB
V
module big
|
||
|
||
import math.bits
|
||
|
||
const digit_array = '0123456789abcdefghijklmnopqrstuvwxyz'.bytes()
|
||
pub const digit_bits = 60 // 60bits
|
||
const max_digit = (u64(1) << digit_bits) - u64(1)
|
||
// big.Integer
|
||
// -----------
|
||
// It has the following properties:
|
||
// 1. Every "digit" is an integer in the range [0, 2^digit_bits-1).
|
||
// 2. The signum can be one of three values: -1, 0, +1 for
|
||
// negative, zero, and positive values, respectively.
|
||
// 3. There should be no leading zeros in the digit array.
|
||
// 4. The digits are stored in little endian format, that is,
|
||
// the digits with a lower positional value (towards the right
|
||
// when represented as a string) have a lower index, and vice versa.
|
||
// 5. zero's signum is zero, digits.len = 0
|
||
pub struct Integer {
|
||
digits []u64 // in one u64, use only `digit_bits` store a digit
|
||
pub:
|
||
signum int
|
||
is_const bool
|
||
}
|
||
|
||
@[unsafe]
|
||
fn (mut x Integer) free() {
|
||
if x.is_const {
|
||
return
|
||
}
|
||
unsafe { x.digits.free() }
|
||
}
|
||
|
||
fn (x Integer) clone() Integer {
|
||
return Integer{
|
||
digits: x.digits.clone()
|
||
signum: x.signum
|
||
is_const: false
|
||
}
|
||
}
|
||
|
||
fn int_signum(value int) int {
|
||
if value == 0 {
|
||
return 0
|
||
}
|
||
return if value < 0 { -1 } else { 1 }
|
||
}
|
||
|
||
// integer_from_int creates a new `big.Integer` from the given int value.
|
||
pub fn integer_from_int(value int) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
if value == min_int {
|
||
return Integer{
|
||
digits: [u64(0x80000000)]
|
||
signum: -1
|
||
}
|
||
} else {
|
||
return Integer{
|
||
digits: [u64(iabs(value))]
|
||
signum: int_signum(value)
|
||
}
|
||
}
|
||
}
|
||
|
||
// integer_from_u32 creates a new `big.Integer` from the given u32 value.
|
||
pub fn integer_from_u32(value u32) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
return Integer{
|
||
digits: [u64(value)]
|
||
signum: 1
|
||
}
|
||
}
|
||
|
||
// integer_from_i64 creates a new `big.Integer` from the given i64 value.
|
||
pub fn integer_from_i64(value i64) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
signum_value := if value < 0 { -1 } else { 1 }
|
||
abs_value := if value == i64(-9223372036854775808) {
|
||
u64(0x8000000000000000)
|
||
} else {
|
||
u64(value * signum_value)
|
||
}
|
||
|
||
lower := u64(abs_value & max_digit)
|
||
upper := u64(abs_value >> digit_bits)
|
||
|
||
if upper == 0 {
|
||
return Integer{
|
||
digits: [lower]
|
||
signum: signum_value
|
||
}
|
||
} else {
|
||
return Integer{
|
||
digits: [lower, upper]
|
||
signum: signum_value
|
||
}
|
||
}
|
||
}
|
||
|
||
// integer_from_u64 creates a new `big.Integer` from the given u64 value.
|
||
pub fn integer_from_u64(value u64) Integer {
|
||
if value == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
lower := u64(value & max_digit)
|
||
upper := u64(value >> digit_bits)
|
||
|
||
if upper == 0 {
|
||
return Integer{
|
||
digits: [lower]
|
||
signum: 1
|
||
}
|
||
} else {
|
||
return Integer{
|
||
digits: [lower, upper]
|
||
signum: 1
|
||
}
|
||
}
|
||
}
|
||
|
||
@[params]
|
||
pub struct IntegerConfig {
|
||
pub:
|
||
signum int = 1
|
||
}
|
||
|
||
// integer_from_bytes creates a new `big.Integer` from the given byte array.
|
||
// By default, positive integers are assumed.
|
||
// If you want a negative integer, use in the following manner:
|
||
// `value := big.integer_from_bytes(bytes, signum: -1)`
|
||
@[direct_array_access]
|
||
pub fn integer_from_bytes(oinput []u8, config IntegerConfig) Integer {
|
||
// Thank you to Miccah (@mcastorina) for this implementation and relevant unit tests.
|
||
if oinput.len == 0 {
|
||
return zero_int
|
||
}
|
||
// Ignore leading 0 bytes:
|
||
mut first_non_zero_index := -1
|
||
for i in 0 .. oinput.len {
|
||
if oinput[i] != 0 {
|
||
first_non_zero_index = i
|
||
break
|
||
}
|
||
}
|
||
if first_non_zero_index == -1 {
|
||
return zero_int
|
||
}
|
||
input := oinput[first_non_zero_index..]
|
||
|
||
mut carry_bits := 0
|
||
mut carry_value := u64(0)
|
||
mut digits := []u64{}
|
||
|
||
for i := input.len - 1; i >= 0; i-- {
|
||
byte_value := input[i]
|
||
for shift in 0 .. 8 {
|
||
bit := (byte_value >> u8(shift)) & 1
|
||
carry_value = (carry_value >> 1) | (u64(bit) << (digit_bits - 1))
|
||
carry_bits++
|
||
if carry_bits == digit_bits {
|
||
digits << carry_value
|
||
carry_value = 0
|
||
carry_bits = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
if carry_bits > 0 {
|
||
remaining_shift := digit_bits - carry_bits
|
||
digits << (carry_value >> remaining_shift)
|
||
}
|
||
|
||
// Remove trailing zeros
|
||
shrink_tail_zeros(mut digits)
|
||
|
||
if digits.len == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
return Integer{
|
||
digits: digits
|
||
signum: config.signum
|
||
}
|
||
}
|
||
|
||
// integer_from_string creates a new `big.Integer` from the decimal digits specified in the given string.
|
||
// For other bases, use `big.integer_from_radix` instead.
|
||
pub fn integer_from_string(characters string) !Integer {
|
||
return integer_from_radix(characters, 10)
|
||
}
|
||
|
||
// integer_from_radix creates a new `big.Integer` from the given string and radix.
|
||
pub fn integer_from_radix(all_characters string, radix u32) !Integer {
|
||
if radix < 2 || radix > 36 {
|
||
return error('math.big: Radix must be between 2 and 36 (inclusive)')
|
||
}
|
||
characters := all_characters.to_lower()
|
||
validate_string(characters, radix)!
|
||
return integer_from_regular_string(characters, radix)
|
||
}
|
||
|
||
@[direct_array_access]
|
||
fn validate_string(characters string, radix u32) ! {
|
||
sign_present := characters.len > 0 && (characters[0] == `+` || characters[0] == `-`)
|
||
|
||
start_index := if sign_present { 1 } else { 0 }
|
||
|
||
for index := start_index; index < characters.len; index++ {
|
||
digit := characters[index]
|
||
value := digit_array.index(digit)
|
||
|
||
if value == -1 {
|
||
return error('math.big: Invalid character ${digit}')
|
||
}
|
||
if value >= radix {
|
||
return error('math.big: Invalid character ${digit} for base ${radix}')
|
||
}
|
||
}
|
||
}
|
||
|
||
@[direct_array_access]
|
||
fn integer_from_regular_string(characters string, radix u32) Integer {
|
||
sign_present := characters.len > 0 && (characters[0] == `+` || characters[0] == `-`)
|
||
|
||
signum := if sign_present {
|
||
if characters[0] == `-` { -1 } else { 1 }
|
||
} else {
|
||
1
|
||
}
|
||
|
||
start_index := if sign_present { 1 } else { 0 }
|
||
|
||
mut result := zero_int
|
||
radix_int := integer_from_u32(radix)
|
||
|
||
for index := start_index; index < characters.len; index++ {
|
||
digit := characters[index]
|
||
value := digit_array.index(digit)
|
||
|
||
result *= radix_int
|
||
result += integer_from_int(value)
|
||
}
|
||
|
||
return Integer{
|
||
digits: result.digits.clone()
|
||
signum: result.signum * signum
|
||
}
|
||
}
|
||
|
||
// abs returns the absolute value of the integer `a`.
|
||
pub fn (a Integer) abs() Integer {
|
||
return if a.signum == 0 {
|
||
zero_int
|
||
} else {
|
||
Integer{
|
||
digits: a.digits.clone()
|
||
signum: 1
|
||
}
|
||
}
|
||
}
|
||
|
||
// neg returns the result of negation of the integer `a`.
|
||
pub fn (a Integer) neg() Integer {
|
||
return if a.signum == 0 {
|
||
zero_int
|
||
} else {
|
||
Integer{
|
||
digits: a.digits.clone()
|
||
signum: -a.signum
|
||
}
|
||
}
|
||
}
|
||
|
||
// + returns the sum of the integers `augend` and `addend`.
|
||
pub fn (augend Integer) + (addend Integer) Integer {
|
||
// Quick exits
|
||
if augend.signum == 0 {
|
||
return addend.clone()
|
||
}
|
||
if addend.signum == 0 {
|
||
return augend.clone()
|
||
}
|
||
// Non-zero cases
|
||
if augend.signum == addend.signum {
|
||
return augend.add(addend)
|
||
}
|
||
// Unequal signs
|
||
if augend.abs_cmp(addend) < 0 {
|
||
return augend.subtract(addend).neg()
|
||
} else {
|
||
return augend.subtract(addend)
|
||
}
|
||
}
|
||
|
||
// - returns the difference of the integers `minuend` and `subtrahend`
|
||
pub fn (minuend Integer) - (subtrahend Integer) Integer {
|
||
// Quick exits
|
||
if minuend.signum == 0 {
|
||
return subtrahend.neg()
|
||
}
|
||
if subtrahend.signum == 0 {
|
||
return minuend.clone()
|
||
}
|
||
// Non-zero cases
|
||
if minuend.signum == subtrahend.signum {
|
||
return minuend.subtract(subtrahend)
|
||
}
|
||
// Unequal signs:
|
||
return minuend.add(subtrahend)
|
||
}
|
||
|
||
fn (integer Integer) add(addend Integer) Integer {
|
||
a := integer.digits
|
||
b := addend.digits
|
||
mut storage := []u64{len: imax(a.len, b.len) + 1}
|
||
add_digit_array(a, b, mut storage)
|
||
return Integer{
|
||
signum: integer.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
fn (integer Integer) subtract(subtrahend Integer) Integer {
|
||
cmp := integer.abs_cmp(subtrahend)
|
||
if cmp == 0 {
|
||
return zero_int
|
||
}
|
||
a, b := if cmp > 0 { integer, subtrahend } else { subtrahend, integer }
|
||
mut storage := []u64{len: a.digits.len}
|
||
subtract_digit_array(a.digits, b.digits, mut storage)
|
||
return Integer{
|
||
signum: cmp * a.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
// * returns the product of the integers `multiplicand` and `multiplier`.
|
||
pub fn (multiplicand Integer) * (multiplier Integer) Integer {
|
||
// Quick exits
|
||
if multiplicand.signum == 0 || multiplier.signum == 0 {
|
||
return zero_int
|
||
}
|
||
if multiplicand == one_int {
|
||
return multiplier.clone()
|
||
}
|
||
if multiplier == one_int {
|
||
return multiplicand.clone()
|
||
}
|
||
// The final sign is the product of the signs
|
||
mut storage := []u64{len: multiplicand.digits.len + multiplier.digits.len}
|
||
multiply_digit_array(multiplicand.digits, multiplier.digits, mut storage)
|
||
return Integer{
|
||
signum: multiplicand.signum * multiplier.signum
|
||
digits: storage
|
||
}
|
||
}
|
||
|
||
// div_mod_internal is an entirely unchecked (in terms of division by zero) method for division.
|
||
// This should only be used for internal calculations involving a definitive non-zero
|
||
// divisor.
|
||
//
|
||
// DO NOT use this method if the divisor has any chance of being 0.
|
||
fn (dividend Integer) div_mod_internal(divisor Integer) (Integer, Integer) {
|
||
mut q := []u64{cap: int_max(1, dividend.digits.len - divisor.digits.len + 1)}
|
||
mut r := []u64{cap: dividend.digits.len}
|
||
mut q_signum := 0
|
||
mut r_signum := 0
|
||
|
||
divide_digit_array(dividend.digits, divisor.digits, mut q, mut r)
|
||
if dividend.signum > 0 && divisor.signum > 0 {
|
||
q_signum = 1
|
||
r_signum = 1
|
||
} else if dividend.signum > 0 && divisor.signum < 0 {
|
||
q_signum = -1
|
||
r_signum = 1
|
||
} else if dividend.signum < 0 && divisor.signum > 0 {
|
||
q_signum = -1
|
||
r_signum = -1
|
||
} else {
|
||
q_signum = 1
|
||
r_signum = -1
|
||
}
|
||
quotient := Integer{
|
||
signum: if q.len == 0 { 0 } else { q_signum }
|
||
digits: q
|
||
}
|
||
remainder := Integer{
|
||
signum: if r.len == 0 { 0 } else { r_signum }
|
||
digits: r
|
||
}
|
||
return quotient, remainder
|
||
}
|
||
|
||
// div_mod returns the quotient and remainder from the division of the integers `dividend`
|
||
// divided by `divisor`.
|
||
//
|
||
// WARNING: this method will panic if `divisor == 0`. Refer to div_mod_checked for a safer version.
|
||
@[inline]
|
||
pub fn (dividend Integer) div_mod(divisor Integer) (Integer, Integer) {
|
||
if _unlikely_(divisor.signum == 0) {
|
||
panic('math.big: Cannot divide by zero')
|
||
}
|
||
return dividend.div_mod_internal(divisor)
|
||
}
|
||
|
||
// div_mod_checked returns the quotient and remainder from the division of the integers `dividend`
|
||
// divided by `divisor`. An error is returned if `divisor == 0`.
|
||
@[inline]
|
||
pub fn (dividend Integer) div_mod_checked(divisor Integer) !(Integer, Integer) {
|
||
if _unlikely_(divisor.signum == 0) {
|
||
return error('math.big: Cannot divide by zero')
|
||
}
|
||
return dividend.div_mod_internal(divisor)
|
||
}
|
||
|
||
// / returns the quotient of `dividend` divided by `divisor`.
|
||
//
|
||
// WARNING: this method will panic if `divisor == 0`. For a division method that returns a Result
|
||
// refer to `div_checked`.
|
||
@[inline]
|
||
pub fn (dividend Integer) / (divisor Integer) Integer {
|
||
q, _ := dividend.div_mod(divisor)
|
||
return q
|
||
}
|
||
|
||
// % returns the remainder of `dividend` divided by `divisor`.
|
||
//
|
||
// WARNING: this method will panic if `divisor == 0`. For a modular division method that
|
||
// returns a Result refer to `mod_checked`.
|
||
// Note: in V, `assert big.integer_from_i64(-10) % big.integer_from_i64(7) == big.integer_from_i64(-3)` passes.
|
||
// In other words, the result is negative 3, and is NOT positive 4.
|
||
@[inline]
|
||
pub fn (dividend Integer) % (divisor Integer) Integer {
|
||
_, r := dividend.div_mod(divisor)
|
||
return r
|
||
}
|
||
|
||
// div_checked returns the quotient of `dividend` divided by `divisor`
|
||
// or an error if `divisor == 0`.
|
||
@[inline]
|
||
pub fn (dividend Integer) div_checked(divisor Integer) !Integer {
|
||
q, _ := dividend.div_mod_checked(divisor)!
|
||
return q
|
||
}
|
||
|
||
// mod_checked returns the remainder of `dividend` divided by `divisor`
|
||
// or an error if `divisor == 0`.
|
||
@[inline]
|
||
pub fn (dividend Integer) mod_checked(divisor Integer) !Integer {
|
||
_, r := dividend.div_mod_checked(divisor)!
|
||
return r
|
||
}
|
||
|
||
// modulo_euclid returns the result of mathematical modulus.
|
||
// The result is always non-negative for positive `divisor`.
|
||
//
|
||
// WARNING: this method will panic if `divisor == 0`.
|
||
@[inline]
|
||
pub fn (dividend Integer) mod_euclid(divisor Integer) Integer {
|
||
r := dividend % divisor
|
||
if r < zero_int {
|
||
return r + divisor.abs()
|
||
} else {
|
||
return r
|
||
}
|
||
}
|
||
|
||
// mod_euclid_checked returns the result of mathematical modulus.
|
||
// The result is always non-negative for positive `divisor`
|
||
// or an error if `divisor == 0`.
|
||
@[inline]
|
||
pub fn (dividend Integer) mod_euclid_checked(divisor Integer) !Integer {
|
||
r := dividend.mod_checked(divisor)!
|
||
if r < zero_int {
|
||
return r + divisor.abs()
|
||
} else {
|
||
return r
|
||
}
|
||
}
|
||
|
||
// mask_bits is the equivalent of `a % 2^n` (only when `a >= 0`), however doing a full division
|
||
// run for this would be a lot of work when we can simply "cut off" all bits to the left of
|
||
// the `n`th bit.
|
||
@[direct_array_access]
|
||
fn (a Integer) mask_bits(n u32) Integer {
|
||
$if debug {
|
||
assert a.signum >= 0
|
||
}
|
||
|
||
if a.digits.len == 0 || n == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
w := n / digit_bits
|
||
b := n % digit_bits
|
||
|
||
if w >= a.digits.len {
|
||
return a
|
||
}
|
||
|
||
return Integer{
|
||
digits: if b == 0 {
|
||
mut storage := []u64{len: int(w)}
|
||
for i := 0; i < storage.len; i++ {
|
||
storage[i] = a.digits[i]
|
||
}
|
||
storage
|
||
} else {
|
||
mut storage := []u64{len: int(w) + 1}
|
||
for i := 0; i < storage.len; i++ {
|
||
storage[i] = a.digits[i]
|
||
}
|
||
storage[w] &= ~(u64(-1) << b)
|
||
storage
|
||
}
|
||
signum: 1
|
||
}
|
||
}
|
||
|
||
// pow returns the integer `base` raised to the power of the u32 `exponent`.
|
||
pub fn (base Integer) pow(exponent u32) Integer {
|
||
if exponent == 0 {
|
||
return one_int
|
||
}
|
||
if exponent == 1 {
|
||
return base.clone()
|
||
}
|
||
mut n := exponent
|
||
mut x := base
|
||
mut y := one_int
|
||
for n > 1 {
|
||
if n & 1 == 1 {
|
||
y *= x
|
||
}
|
||
x *= x
|
||
n >>= 1
|
||
}
|
||
return x * y
|
||
}
|
||
|
||
// mod_pow returns the integer `base` raised to the power of the u32 `exponent` modulo the integer `modulus`.
|
||
pub fn (base Integer) mod_pow(exponent u64, modulus Integer) Integer {
|
||
if exponent == 0 {
|
||
return one_int
|
||
}
|
||
if exponent == 1 {
|
||
return base % modulus
|
||
}
|
||
mut n := exponent
|
||
mut x := base % modulus
|
||
mut y := one_int
|
||
for n > 1 {
|
||
if n & 1 == 1 {
|
||
y = (y * x) % modulus
|
||
}
|
||
x = (x * x) % modulus
|
||
n >>= 1
|
||
}
|
||
return x * y % modulus
|
||
}
|
||
|
||
// big_mod_pow returns the integer `base` raised to the power of the integer `exponent` modulo the integer `modulus`.
|
||
@[direct_array_access]
|
||
pub fn (base Integer) big_mod_pow(exponent Integer, modulus Integer) !Integer {
|
||
if exponent.signum < 0 {
|
||
return error('math.big: Exponent needs to be non-negative.')
|
||
}
|
||
|
||
// this goes first as otherwise 1 could be returned incorrectly if base == 1
|
||
if modulus.bit_len() <= 1 {
|
||
return zero_int
|
||
}
|
||
|
||
// x^0 == 1 || 1^x == 1
|
||
if exponent.signum == 0 || base.bit_len() == 1 {
|
||
return one_int
|
||
}
|
||
|
||
// 0^x == 0 (x != 0 due to previous clause)
|
||
if base.signum == 0 {
|
||
return zero_int
|
||
}
|
||
|
||
if exponent.bit_len() == 1 {
|
||
// x^1 without mod == x
|
||
if modulus.signum == 0 {
|
||
return base
|
||
}
|
||
// x^1 (mod m) === x % m
|
||
return base % modulus
|
||
}
|
||
|
||
// the amount of precomputation in windowed exponentiation (done in the montgomery and binary
|
||
// windowed exponentiation algorithms) is far too costly for small sized exponents, so
|
||
// we redirect the call to mod_pow
|
||
return if exponent.digits.len > 1 {
|
||
if modulus.is_odd() {
|
||
// modulus is odd, therefore we use the normal
|
||
// montgomery modular exponentiation algorithm
|
||
base.mont_odd(exponent, modulus)
|
||
} else if modulus.is_power_of_2() {
|
||
base.exp_binary(exponent, modulus)
|
||
} else {
|
||
base.mont_even(exponent, modulus)
|
||
}
|
||
} else {
|
||
base.mod_pow(exponent.digits[0], modulus)
|
||
}
|
||
}
|
||
|
||
// inc increments `a` by 1 in place.
|
||
pub fn (mut a Integer) inc() {
|
||
a = a + one_int
|
||
}
|
||
|
||
// dec decrements `a` by 1 in place.
|
||
pub fn (mut a Integer) dec() {
|
||
a = a - one_int
|
||
}
|
||
|
||
// == returns `true` if the integers `a` and `b` are equal in value and sign.
|
||
@[inline]
|
||
pub fn (a Integer) == (b Integer) bool {
|
||
return a.signum == b.signum && a.digits.len == b.digits.len && a.digits == b.digits
|
||
}
|
||
|
||
// abs_cmp returns the result of comparing the magnitudes of the integers `a` and `b`.
|
||
// It returns a negative int if `|a| < |b|`, 0 if `|a| == |b|`, and a positive int if `|a| > |b|`.
|
||
@[inline]
|
||
pub fn (a Integer) abs_cmp(b Integer) int {
|
||
return compare_digit_array(a.digits, b.digits)
|
||
}
|
||
|
||
// < returns `true` if the integer `a` is less than `b`.
|
||
pub fn (a Integer) < (b Integer) bool {
|
||
// Quick exits based on signum value:
|
||
if a.signum < b.signum {
|
||
return true
|
||
}
|
||
if a.signum > b.signum {
|
||
return false
|
||
}
|
||
// They have equal sign
|
||
signum := a.signum
|
||
if signum == 0 { // Are they both zero?
|
||
return false
|
||
}
|
||
// If they are negative, the one with the larger absolute value is smaller
|
||
cmp := a.abs_cmp(b)
|
||
return if signum < 0 { cmp > 0 } else { cmp < 0 }
|
||
}
|
||
|
||
// get_bit checks whether the bit at the given index is set.
|
||
@[direct_array_access]
|
||
pub fn (a Integer) get_bit(i u32) bool {
|
||
target_index := i / digit_bits
|
||
offset := i % digit_bits
|
||
if target_index >= a.digits.len {
|
||
return false
|
||
}
|
||
return (a.digits[target_index] >> offset) & 1 != 0
|
||
}
|
||
|
||
// set_bit sets the bit at the given index to the given value.
|
||
pub fn (mut a Integer) set_bit(i u32, value bool) {
|
||
target_index := i / digit_bits
|
||
offset := i % digit_bits
|
||
|
||
if target_index >= a.digits.len {
|
||
if value {
|
||
a = one_int.left_shift(i).bitwise_or(a)
|
||
}
|
||
return
|
||
}
|
||
|
||
mut copy := a.digits.clone()
|
||
|
||
if value {
|
||
copy[target_index] |= u64(1) << offset
|
||
} else {
|
||
copy[target_index] &= ~(u64(1) << offset)
|
||
}
|
||
|
||
a = Integer{
|
||
signum: a.signum
|
||
digits: copy
|
||
}
|
||
}
|
||
|
||
// bitwise_or returns the "bitwise or" of the integers `|a|` and `|b|`.
|
||
//
|
||
// Note: both operands are treated as absolute values.
|
||
pub fn (a Integer) bitwise_or(b Integer) Integer {
|
||
mut result := []u64{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_or_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_and returns the "bitwise and" of the integers `|a|` and `|b|`.
|
||
//
|
||
// Note: both operands are treated as absolute values.
|
||
pub fn (a Integer) bitwise_and(b Integer) Integer {
|
||
mut result := []u64{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_and_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_not returns the "bitwise not" of the integer `|a|`.
|
||
//
|
||
// Note: the integer is treated as an absolute value.
|
||
pub fn (a Integer) bitwise_not() Integer {
|
||
mut result := []u64{len: a.digits.len}
|
||
bitwise_not_digit_array(a.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// bitwise_com returns "bitwise complement" of integer `a`.
|
||
//
|
||
// Note: this function consider the sign of the input.
|
||
pub fn (a Integer) bitwise_com() Integer {
|
||
return if a.signum == -1 {
|
||
a.abs() - one_int
|
||
} else {
|
||
(a + one_int).neg()
|
||
}
|
||
}
|
||
|
||
// bitwise_xor returns the "bitwise exclusive or" of the integers `|a|` and `|b|`.
|
||
//
|
||
// Note: both operands are treated as absolute values.
|
||
pub fn (a Integer) bitwise_xor(b Integer) Integer {
|
||
mut result := []u64{len: imax(a.digits.len, b.digits.len)}
|
||
bitwise_xor_digit_array(a.digits, b.digits, mut result)
|
||
return Integer{
|
||
digits: result
|
||
signum: if result.len == 0 { 0 } else { 1 }
|
||
}
|
||
}
|
||
|
||
// left_shift returns the integer `a` shifted left by `amount` bits.
|
||
@[direct_array_access]
|
||
pub fn (a Integer) left_shift(amount u32) Integer {
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if amount == 0 {
|
||
return a
|
||
}
|
||
normalised_amount := amount % digit_bits
|
||
digit_offset := int(amount / digit_bits)
|
||
mut new_array := []u64{len: a.digits.len + digit_offset}
|
||
for index in 0 .. a.digits.len {
|
||
new_array[index + digit_offset] = a.digits[index]
|
||
}
|
||
if normalised_amount > 0 {
|
||
shift_digits_left(new_array, normalised_amount, mut new_array)
|
||
}
|
||
return Integer{
|
||
digits: new_array
|
||
signum: a.signum
|
||
}
|
||
}
|
||
|
||
// right_shift returns the integer `a` shifted right by `amount` bits.
|
||
@[direct_array_access]
|
||
pub fn (a Integer) right_shift(amount u32) Integer {
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if amount == 0 {
|
||
return a
|
||
}
|
||
normalised_amount := amount % digit_bits
|
||
digit_offset := int(amount / digit_bits)
|
||
if digit_offset >= a.digits.len {
|
||
return zero_int
|
||
}
|
||
mut new_array := []u64{len: a.digits.len - digit_offset}
|
||
for index in 0 .. new_array.len {
|
||
new_array[index] = a.digits[index + digit_offset]
|
||
}
|
||
if normalised_amount > 0 {
|
||
shift_digits_right(new_array, normalised_amount, mut new_array)
|
||
}
|
||
return Integer{
|
||
digits: new_array
|
||
signum: if new_array.len > 0 { a.signum } else { 0 }
|
||
}
|
||
}
|
||
|
||
// bin_str returns the binary string representation of the integer `a`.
|
||
@[direct_array_access]
|
||
pub fn (integer Integer) bin_str() string {
|
||
return integer.radix_str(2)
|
||
}
|
||
|
||
// hex returns the hexadecimal string representation of the integer `a`.
|
||
@[direct_array_access]
|
||
pub fn (integer Integer) hex() string {
|
||
return integer.radix_str(16)
|
||
}
|
||
|
||
// radix_str returns the string representation of the integer `a` in the specified radix.
|
||
pub fn (integer Integer) radix_str(radix u32) string {
|
||
if integer.signum == 0 || radix == 0 {
|
||
return '0'
|
||
}
|
||
return integer.general_radix_str(radix)
|
||
}
|
||
|
||
fn (integer Integer) general_radix_str(radix u32) string {
|
||
$if debug {
|
||
assert radix != 0
|
||
}
|
||
divisor := integer_from_u32(radix)
|
||
|
||
mut current := integer.abs()
|
||
mut new_current := zero_int
|
||
mut digit := zero_int
|
||
mut rune_array := []rune{cap: current.digits.len * 4}
|
||
for current.signum > 0 {
|
||
new_current, digit = current.div_mod_internal(divisor)
|
||
rune_array << digit_array[digit.int()]
|
||
unsafe { digit.free() }
|
||
unsafe { current.free() }
|
||
current = new_current
|
||
}
|
||
if integer.signum == -1 {
|
||
rune_array << `-`
|
||
}
|
||
|
||
rune_array.reverse_in_place()
|
||
return rune_array.string()
|
||
}
|
||
|
||
// str returns the decimal string representation of the integer `a`.
|
||
pub fn (integer Integer) str() string {
|
||
return integer.radix_str(10)
|
||
}
|
||
|
||
// int returns the integer value of the integer `a`.
|
||
// NOTE: This may cause loss of precision.
|
||
@[direct_array_access]
|
||
pub fn (a Integer) int() int {
|
||
if a.signum == 0 {
|
||
return 0
|
||
}
|
||
// Check for minimum value int
|
||
if a.digits[0] >= 2147483648 && a.signum == -1 {
|
||
return -2147483648
|
||
}
|
||
// Rest of the values should be fine
|
||
value := int(a.digits[0] & 0x7fffffff)
|
||
return value * a.signum
|
||
}
|
||
|
||
// bytes returns the a byte representation of the integer a, along with the signum int.
|
||
// NOTE: The byte array returned is in big endian order.
|
||
@[direct_array_access]
|
||
pub fn (a Integer) bytes() ([]u8, int) {
|
||
if a.signum == 0 {
|
||
return []u8{len: 0}, 0
|
||
}
|
||
bit_len := a.bit_len()
|
||
mut bytes := []u8{cap: bit_len / 8 + 1}
|
||
mut current_byte := u8(0)
|
||
mut bits_in_byte := 0
|
||
mut digit := a.digits.last()
|
||
mut bit := u8(0)
|
||
|
||
// pad first byte
|
||
bits_in_byte = 8 - bit_len % 8
|
||
if bits_in_byte == 8 {
|
||
bits_in_byte = 0
|
||
}
|
||
// MSB digit
|
||
for i := bit_len % digit_bits - 1; i >= 0; i-- {
|
||
bit = u8((digit >> i) & 1)
|
||
current_byte = (current_byte << 1) | u8(bit)
|
||
bits_in_byte++
|
||
if bits_in_byte == 8 {
|
||
bytes << current_byte
|
||
current_byte = 0
|
||
bits_in_byte = 0
|
||
}
|
||
}
|
||
|
||
for i := a.digits.len - 2; i >= 0; i-- {
|
||
digit = a.digits[i]
|
||
for shift := digit_bits - 1; shift >= 0; shift-- {
|
||
bit = u8((digit >> shift) & 1)
|
||
current_byte = (current_byte << 1) | bit
|
||
bits_in_byte++
|
||
if bits_in_byte == 8 {
|
||
bytes << current_byte
|
||
current_byte = 0
|
||
bits_in_byte = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
return bytes, a.signum
|
||
}
|
||
|
||
// factorial returns the factorial of the integer `a`.
|
||
pub fn (a Integer) factorial() Integer {
|
||
if a.signum == 0 {
|
||
return one_int
|
||
}
|
||
mut product := one_int
|
||
mut current := a
|
||
for current.signum != 0 {
|
||
product *= current
|
||
current.dec()
|
||
}
|
||
return product
|
||
}
|
||
|
||
// isqrt returns the closest integer square root of the integer `a`.
|
||
//
|
||
// WARNING: this method will panic if `a < 0`. Refer to isqrt_checked for a safer version.
|
||
@[inline]
|
||
pub fn (a Integer) isqrt() Integer {
|
||
return a.isqrt_checked() or { panic(err) }
|
||
}
|
||
|
||
// isqrt returns the closest integer square root of the integer `a`.
|
||
// An error is returned if `a < 0`.
|
||
pub fn (a Integer) isqrt_checked() !Integer {
|
||
if a.signum < 0 {
|
||
return error('math.big: Cannot calculate square root of negative integer')
|
||
}
|
||
if a.signum == 0 {
|
||
return a
|
||
}
|
||
if a.digits.len == 1 && a.digits.last() == 1 {
|
||
return a
|
||
}
|
||
|
||
mut shift := a.bit_len()
|
||
if shift & 1 == 1 {
|
||
shift += 1
|
||
}
|
||
mut result := zero_int
|
||
for shift >= 0 {
|
||
result = result.left_shift(1)
|
||
larger := result + one_int
|
||
if (larger * larger).abs_cmp(a.right_shift(u32(shift))) <= 0 {
|
||
result = larger
|
||
}
|
||
shift -= 2
|
||
}
|
||
return result
|
||
}
|
||
|
||
@[inline]
|
||
fn bi_min(a Integer, b Integer) Integer {
|
||
return if a < b { a } else { b }
|
||
}
|
||
|
||
@[inline]
|
||
fn bi_max(a Integer, b Integer) Integer {
|
||
return if a > b { a } else { b }
|
||
}
|
||
|
||
// gcd returns the greatest common divisor of the two integers `a` and `b`.
|
||
pub fn (a Integer) gcd(b Integer) Integer {
|
||
// The cutoff is determined empirically, using vlib/v/tests/bench/math_big_gcd/bench_euclid.v .
|
||
if b.digits.len < 8 {
|
||
return a.gcd_euclid(b)
|
||
}
|
||
return a.gcd_binary(b)
|
||
}
|
||
|
||
// gcd_binary returns the greatest common divisor of the two integers `a` and `b`.
|
||
// Note that gcd_binary is faster than gcd_euclid, for large integers (over 8 bytes long).
|
||
// Inspired by the 2013-christmas-special by D. Lemire & R. Corderoy https://en.algorithmica.org/hpc/analyzing-performance/gcd/
|
||
// For more information, refer to the Wikipedia article: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
||
// Discussion and further information: https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/
|
||
pub fn (a Integer) gcd_binary(b Integer) Integer {
|
||
if a.signum == 0 {
|
||
return b.abs()
|
||
}
|
||
if b.signum == 0 {
|
||
return a.abs()
|
||
}
|
||
if a.abs_cmp(one_int) == 0 || b.abs_cmp(one_int) == 0 {
|
||
return one_int
|
||
}
|
||
|
||
mut aa, az := a.abs().rsh_to_set_bit()
|
||
mut bb, bz := b.abs().rsh_to_set_bit()
|
||
shift := umin(az, bz)
|
||
|
||
for aa.signum != 0 {
|
||
diff := bb - aa
|
||
bb = bi_min(aa, bb)
|
||
aa, _ = diff.abs().rsh_to_set_bit()
|
||
}
|
||
return bb.left_shift(shift)
|
||
}
|
||
|
||
// gcd_euclid returns the greatest common divisor of the two integers `a` and `b`.
|
||
// Note that gcd_euclid is faster than gcd_binary, for very-small-integers up to 8-byte/u64.
|
||
pub fn (a Integer) gcd_euclid(b Integer) Integer {
|
||
if a.signum == 0 {
|
||
return b.abs()
|
||
}
|
||
if b.signum == 0 {
|
||
return a.abs()
|
||
}
|
||
if a.signum < 0 {
|
||
return a.neg().gcd_euclid(b)
|
||
}
|
||
if b.signum < 0 {
|
||
return a.gcd_euclid(b.neg())
|
||
}
|
||
mut x := a
|
||
mut y := b
|
||
mut r := x % y
|
||
for r.signum != 0 {
|
||
x = y
|
||
y = r
|
||
r = x % y
|
||
}
|
||
return y
|
||
}
|
||
|
||
// mod_inverse calculates the multiplicative inverse of the integer `a` in the ring `ℤ/nℤ`.
|
||
// Therefore, the return value `x` satisfies `a * x == 1 (mod m)`.
|
||
// An error is returned if `a` and `n` are not relatively prime, i.e. `gcd(a, n) != 1` or
|
||
// if n <= 1
|
||
@[inline]
|
||
pub fn (a Integer) mod_inverse(n Integer) !Integer {
|
||
return if n.bit_len() <= 1 {
|
||
error('math.big: Modulus `n` must be greater than 1')
|
||
} else if a.gcd(n) != one_int {
|
||
error('math.big: No multiplicative inverse')
|
||
} else {
|
||
a.mod_inv(n)
|
||
}
|
||
}
|
||
|
||
// this is an internal function, therefore we assume valid inputs,
|
||
// i.e. m > 1 and gcd(a, m) = 1
|
||
// see pub fn mod_inverse for details on the result
|
||
// -----
|
||
// the algorithm is based on the Extended Euclidean algorithm which computes `ax + by = d`
|
||
// in this case `b` is the input integer `a` and `a` is the input modulus `m`. The extended
|
||
// Euclidean algorithm calculates the greatest common divisor `d` and two coefficients `x` and `y`
|
||
// satisfying the above equality.
|
||
//
|
||
// For the sake of clarity, we refer to the input integer `a` as `b` and the integer `m` as `a`.
|
||
// If `gcd(a, b) = d = 1` then the coefficient `y` is known to be the multiplicative inverse of
|
||
// `b` in ring `Z/aZ`, since reducing `ax + by = 1` by `a` yields `by == 1 (mod a)`.
|
||
@[direct_array_access]
|
||
fn (a Integer) mod_inv(m Integer) Integer {
|
||
mut n := Integer{
|
||
digits: m.digits.clone()
|
||
signum: 1
|
||
}
|
||
mut b := a
|
||
mut x := one_int
|
||
mut y := zero_int
|
||
if b.signum < 0 || b.abs_cmp(n) >= 0 {
|
||
b = b % n
|
||
}
|
||
mut sign := -1
|
||
|
||
for b != zero_int {
|
||
q, r := if n.bit_len() == b.bit_len() {
|
||
one_int, n - b
|
||
} else {
|
||
// safe because the loop terminates if b == 0
|
||
n.div_mod_internal(b)
|
||
}
|
||
|
||
n = b
|
||
b = r
|
||
|
||
// tmp := q * x + y
|
||
tmp := if q == one_int {
|
||
x
|
||
} else if q.digits.len == 1 && q.digits[0] & (q.digits[0] - 1) == 0 {
|
||
x.left_shift(u32(bits.trailing_zeros_64(q.digits[0])))
|
||
} else {
|
||
q * x
|
||
} + y
|
||
|
||
y = x
|
||
x = tmp
|
||
sign = -sign
|
||
}
|
||
|
||
if sign < 0 {
|
||
y = m - y
|
||
}
|
||
|
||
$if debug {
|
||
assert n == one_int
|
||
}
|
||
|
||
return if y.signum > 0 && y.abs_cmp(m) < 0 {
|
||
y
|
||
} else {
|
||
y % m
|
||
}
|
||
}
|
||
|
||
// rsh_to_set_bit returns the integer `x` shifted right until it is odd and an exponent satisfying
|
||
// `x = x1 * 2^n`
|
||
// we don't return `2^n`, because the caller may be able to use `n` without allocating an Integer
|
||
@[direct_array_access; inline]
|
||
fn (x Integer) rsh_to_set_bit() (Integer, u32) {
|
||
if x.digits.len == 0 {
|
||
return zero_int, 0
|
||
}
|
||
|
||
mut n := u32(0)
|
||
for x.digits[n] == 0 {
|
||
n++
|
||
}
|
||
n = (n * digit_bits) + u32(bits.trailing_zeros_64(x.digits[n]))
|
||
return x.right_shift(n), n
|
||
}
|
||
|
||
// is_odd returns true if the integer `x` is odd, therefore an integer of the form `2k + 1`.
|
||
// An input of 0 returns false.
|
||
@[direct_array_access; inline]
|
||
pub fn (x Integer) is_odd() bool {
|
||
return x.digits.len != 0 && x.digits[0] & 1 == 1
|
||
}
|
||
|
||
// is_power_of_2 returns true when the integer `x` satisfies `2^n`, where `n >= 0`
|
||
@[direct_array_access; inline]
|
||
pub fn (x Integer) is_power_of_2() bool {
|
||
if x.signum <= 0 {
|
||
return false
|
||
}
|
||
|
||
// check if all but the most significant digit are 0
|
||
for i := 0; i < x.digits.len - 1; i++ {
|
||
if x.digits[i] != 0 {
|
||
return false
|
||
}
|
||
}
|
||
n := x.digits.last()
|
||
return n & (n - u64(1)) == 0
|
||
}
|
||
|
||
// bit_len returns the number of bits required to represent the integer `a`.
|
||
@[inline]
|
||
pub fn (x Integer) bit_len() int {
|
||
if x.signum == 0 {
|
||
return 0
|
||
}
|
||
if x.digits.len == 0 {
|
||
return 0
|
||
}
|
||
return x.digits.len * digit_bits - (bits.leading_zeros_64(x.digits.last()) - (64 - digit_bits))
|
||
}
|