v/vlib/crypto
2023-12-11 12:40:07 +02:00
..
aes all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
bcrypt all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
blake2b crypto: add blake2s and blake2b hashes (#20149) 2023-12-11 12:40:07 +02:00
blake2s crypto: add blake2s and blake2b hashes (#20149) 2023-12-11 12:40:07 +02:00
blowfish crypto.bcrypt: fix bcrypt failure for valid pass and hash (fix #19558) (#19569) 2023-10-16 14:12:57 +03:00
cipher all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
des all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
ed25519 all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
hmac crypto: add blake2s and blake2b hashes (#20149) 2023-12-11 12:40:07 +02:00
internal/subtle checker: warn about byte deprecation, when used as a fn parameter (#19629) 2023-10-23 20:54:28 +03:00
md5 all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
pem all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
rand all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
rc4 all: update attributes to use new syntax 2023-11-15 16:16:01 +11:00
sha1 all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
sha256 all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
sha512 all: unwrap const() blocks 2023-11-25 10:02:51 +03:00
crypto.v tools: make v test-cleancode test everything by default (#10050) 2021-05-08 13:32:29 +03:00
README.md vfmt: change all '$expr' to '${expr}' (#16428) 2022-11-15 16:53:13 +03:00

Description:

crypto is a module that exposes cryptographic algorithms to V programs.

Each submodule implements things differently, so be sure to consider the documentation of the specific algorithm you need, but in general, the method is to create a cipher struct using one of the module functions, and then to call the encrypt or decrypt method on that struct to actually encrypt or decrypt your data.

This module is a work-in-progress. For example, the AES implementation currently requires you to create a destination buffer of the correct size to receive the decrypted data, and the AesCipher encrypt and decrypt functions only operate on the first block of the src.

The implementations here are loosely based on Go's crypto package.

Examples:

AES:

import crypto.aes
import crypto.rand

fn main() {
	// remember to save this key somewhere if you ever want to decrypt your data
	key := rand.bytes(32)!
	println('KEY: ${key}')

	// this data is one block (16 bytes) big
	mut data := 'THIS IS THE DATA'.bytes()

	println('generating cipher')
	cipher := aes.new_cipher(key)

	println('performing encryption')
	mut encrypted := []u8{len: aes.block_size}
	cipher.encrypt(mut encrypted, data)
	println(encrypted)

	println('performing decryption')
	mut decrypted := []u8{len: aes.block_size}
	cipher.decrypt(mut decrypted, encrypted)
	println(decrypted)

	assert decrypted == data
}

JWT:

import crypto.hmac
import crypto.sha256
import encoding.base64
import json
import time

struct JwtHeader {
	alg string
	typ string
}

struct JwtPayload {
	sub  string
	name string
	iat  int
}

fn main() {
	sw := time.new_stopwatch()
	secret := 'your-256-bit-secret'
	token := make_token(secret)
	ok := auth_verify(secret, token)
	dt := sw.elapsed().microseconds()
	println('token: ${token}')
	println('auth_verify(secret, token): ${ok}')
	println('Elapsed time: ${dt} uS')
}

fn make_token(secret string) string {
	header := base64.url_encode(json.encode(JwtHeader{'HS256', 'JWT'}).bytes())
	payload := base64.url_encode(json.encode(JwtPayload{'1234567890', 'John Doe', 1516239022}).bytes())
	signature := base64.url_encode(hmac.new(secret.bytes(), '${header}.${payload}'.bytes(),
		sha256.sum, sha256.block_size))
	jwt := '${header}.${payload}.${signature}'
	return jwt
}

fn auth_verify(secret string, token string) bool {
	token_split := token.split('.')
	signature_mirror := hmac.new(secret.bytes(), '${token_split[0]}.${token_split[1]}'.bytes(),
		sha256.sum, sha256.block_size)
	signature_from_token := base64.url_decode(token_split[2])
	return hmac.equal(signature_from_token, signature_mirror)
}