v/vlib/math/stats/stats.v

545 lines
12 KiB
V

module stats
import math
// freq calculates the Measure of Occurrence
// Frequency of a given number
// Based on
// https://www.mathsisfun.com/data/frequency-distribution.html
pub fn freq[T](data []T, val T) int {
if data.len == 0 {
return 0
}
mut count := 0
for v in data {
if v == val {
count++
}
}
return count
}
// mean calculates the average
// of the given input array, sum(data)/data.len
// Based on
// https://www.mathsisfun.com/data/central-measures.html
pub fn mean[T](data []T) T {
if data.len == 0 {
return T(0)
}
mut sum := T(0)
for v in data {
sum += v
}
return T(sum / data.len)
}
// geometric_mean calculates the central tendency
// of the given input array, product(data)**1/data.len
// Based on
// https://www.mathsisfun.com/numbers/geometric-mean.html
pub fn geometric_mean[T](data []T) T {
if data.len == 0 {
return T(0)
}
mut sum := T(1)
for v in data {
sum *= v
}
$if T is f64 {
return math.pow(sum, f64(1.0) / data.len)
} $else {
// use f32 for f32/int/...
return T(math.powf(sum, f32(1.0) / data.len))
}
}
// harmonic_mean calculates the reciprocal of the average of reciprocals
// of the given input array
// Based on
// https://www.mathsisfun.com/numbers/harmonic-mean.html
pub fn harmonic_mean[T](data []T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
mut sum := f64(0)
for v in data {
sum += f64(1.0) / v
}
return f64(f64(data.len) / sum)
} $else {
// use f32 for f32/int/...
mut sum := f32(0)
for v in data {
sum += f32(1.0) / f32(v)
}
return T(f32(data.len) / sum)
}
}
// median returns the middlemost value of the given input array ( input array is assumed to be sorted )
// Based on
// https://www.mathsisfun.com/data/central-measures.html
pub fn median[T](sorted_data []T) T {
if sorted_data.len == 0 {
return T(0)
}
if sorted_data.len % 2 == 0 {
mid := (sorted_data.len / 2) - 1
return (sorted_data[mid] + sorted_data[mid + 1]) / T(2)
} else {
return sorted_data[((sorted_data.len - 1) / 2)]
}
}
// mode calculates the highest occurring value of the given input array
// Based on
// https://www.mathsisfun.com/data/central-measures.html
pub fn mode[T](data []T) T {
if data.len == 0 {
return T(0)
}
mut freqs := []int{}
for v in data {
freqs << freq(data, v)
}
mut max := 0
for i := 0; i < freqs.len; i++ {
if freqs[i] > freqs[max] {
max = i
}
}
return data[max]
}
// rms, Root Mean Square, calculates the sqrt of the mean of the squares of the given input array
// Based on
// https://en.wikipedia.org/wiki/Root_mean_square
pub fn rms[T](data []T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
mut sum := f64(0)
for v in data {
sum += math.pow(v, 2)
}
return math.sqrt(sum / data.len)
} $else {
// use f32 for f32/int/...
mut sum := f32(0)
for v in data {
sum += math.powf(v, 2)
}
return T(math.sqrtf(sum / data.len))
}
}
// population_variance is the Measure of Dispersion / Spread
// of the given input array
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn population_variance[T](data []T) T {
if data.len == 0 {
return T(0)
}
data_mean := mean[T](data)
return population_variance_mean[T](data, data_mean)
}
// population_variance_mean is the Measure of Dispersion / Spread
// of the given input array, with the provided mean
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
pub fn population_variance_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
mut sum := T(0)
for v in data {
sum += T((v - mean) * (v - mean))
}
return T(sum / data.len)
}
// sample_variance calculates the spread of dataset around the mean
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn sample_variance[T](data []T) T {
if data.len == 0 {
return T(0)
}
data_mean := mean[T](data)
return sample_variance_mean[T](data, data_mean)
}
// sample_variance calculates the spread of dataset around the provided mean
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
pub fn sample_variance_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
mut sum := T(0)
for v in data {
sum += T((v - mean) * (v - mean))
}
return T(sum / (data.len - 1))
}
// population_stddev calculates how spread out the dataset is
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn population_stddev[T](data []T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt(population_variance[T](data))
} $else {
return T(math.sqrtf(population_variance[T](data)))
}
}
// population_stddev_mean calculates how spread out the dataset is, with the provide mean
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn population_stddev_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt(population_variance_mean[T](data, mean))
} $else {
return T(math.sqrtf(population_variance_mean[T](data, mean)))
}
}
// Measure of Dispersion / Spread
// Sample Standard Deviation of the given input array
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn sample_stddev[T](data []T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt(sample_variance[T](data))
} $else {
return T(math.sqrtf(sample_variance[T](data)))
}
}
// Measure of Dispersion / Spread
// Sample Standard Deviation of the given input array
// Based on
// https://www.mathsisfun.com/data/standard-deviation.html
@[inline]
pub fn sample_stddev_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt(sample_variance_mean[T](data, mean))
} $else {
return T(math.sqrtf(sample_variance_mean[T](data, mean)))
}
}
// absdev calculates the average distance between each data point and the mean
// Based on
// https://en.wikipedia.org/wiki/Average_absolute_deviation
@[inline]
pub fn absdev[T](data []T) T {
if data.len == 0 {
return T(0)
}
data_mean := mean[T](data)
return absdev_mean[T](data, data_mean)
}
// absdev_mean calculates the average distance between each data point and the provided mean
// Based on
// https://en.wikipedia.org/wiki/Average_absolute_deviation
pub fn absdev_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
mut sum := T(0)
for v in data {
sum += math.abs(v - mean)
}
return T(sum / data.len)
}
// tts, Sum of squares, calculates the sum over all squared differences between values and overall mean
@[inline]
pub fn tss[T](data []T) T {
if data.len == 0 {
return T(0)
}
data_mean := mean[T](data)
return tss_mean[T](data, data_mean)
}
// tts_mean, Sum of squares, calculates the sum over all squared differences between values and the provided mean
pub fn tss_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
mut tss := T(0)
for v in data {
tss += T((v - mean) * (v - mean))
}
return tss
}
// min finds the minimum value from the dataset
pub fn min[T](data []T) T {
if data.len == 0 {
return T(0)
}
mut min := data[0]
for v in data {
if v < min {
min = v
}
}
return min
}
// max finds the maximum value from the dataset
pub fn max[T](data []T) T {
if data.len == 0 {
return T(0)
}
mut max := data[0]
for v in data {
if v > max {
max = v
}
}
return max
}
// minmax finds the minimum and maximum value from the dataset
pub fn minmax[T](data []T) (T, T) {
if data.len == 0 {
return T(0), T(0)
}
mut max := data[0]
mut min := data[0]
for v in data[1..] {
if v > max {
max = v
}
if v < min {
min = v
}
}
return min, max
}
// min_index finds the first index of the minimum value
pub fn min_index[T](data []T) int {
if data.len == 0 {
return 0
}
mut min := data[0]
mut min_index := 0
for i, v in data {
if v < min {
min = v
min_index = i
}
}
return min_index
}
// max_index finds the first index of the maximum value
pub fn max_index[T](data []T) int {
if data.len == 0 {
return 0
}
mut max := data[0]
mut max_index := 0
for i, v in data {
if v > max {
max = v
max_index = i
}
}
return max_index
}
// minmax_index finds the first index of the minimum and maximum value
pub fn minmax_index[T](data []T) (int, int) {
if data.len == 0 {
return 0, 0
}
mut min := data[0]
mut max := data[0]
mut min_index := 0
mut max_index := 0
for i, v in data {
if v < min {
min = v
min_index = i
}
if v > max {
max = v
max_index = i
}
}
return min_index, max_index
}
// range calculates the difference between the min and max
// Range ( Maximum - Minimum ) of the given input array
// Based on
// https://www.mathsisfun.com/data/range.html
pub fn range[T](data []T) T {
if data.len == 0 {
return T(0)
}
min, max := minmax[T](data)
return max - min
}
// covariance calculates directional association between datasets
// positive value denotes variables move in same direction and negative denotes variables move in opposite directions
@[inline]
pub fn covariance[T](data1 []T, data2 []T) T {
mean1 := mean[T](data1)
mean2 := mean[T](data2)
return covariance_mean[T](data1, data2, mean1, mean2)
}
// covariance_mean computes the covariance of a dataset with means provided
// the recurrence relation
pub fn covariance_mean[T](data1 []T, data2 []T, mean1 T, mean2 T) T {
n := int(math.min(data1.len, data2.len))
if n == 0 {
return T(0)
}
mut covariance := T(0)
for i in 0 .. n {
delta1 := data1[i] - mean1
delta2 := data2[i] - mean2
covariance += T((delta1 * delta2 - covariance) / (T(i) + T(1)))
}
return covariance
}
// lag1_autocorrelation_mean calculates the correlation between values that are one time period apart
// of a dataset, based on the mean
@[inline]
pub fn lag1_autocorrelation[T](data []T) T {
data_mean := mean[T](data)
return lag1_autocorrelation_mean[T](data, data_mean)
}
// lag1_autocorrelation_mean calculates the correlation between values that are one time period apart
// of a dataset, using
// the recurrence relation
pub fn lag1_autocorrelation_mean[T](data []T, mean T) T {
if data.len == 0 {
return T(0)
}
mut q := T(0)
mut v := (data[0] * mean) - (data[0] * mean)
for i := 1; i < data.len; i++ {
delta0 := data[i - 1] - mean
delta1 := data[i] - mean
d01 := delta0 * delta1
d11 := delta1 * delta1
ti1 := T(i) + T(1)
q += T((d01 - q) / ti1)
v += T((d11 - v) / ti1)
}
return T(q / v)
}
// kurtosis calculates the measure of the 'tailedness' of the data by finding mean and standard of deviation
@[inline]
pub fn kurtosis[T](data []T) T {
data_mean := mean[T](data)
sd := population_stddev_mean[T](data, data_mean)
return kurtosis_mean_stddev[T](data, data_mean, sd)
}
// kurtosis_mean_stddev calculates the measure of the 'tailedness' of the data
// using the fourth moment the deviations, normalized by the sd
pub fn kurtosis_mean_stddev[T](data []T, mean T, sd T) T {
if data.len == 0 {
return T(0)
}
mut avg := T(0) // find the fourth moment the deviations, normalized by the sd
/*
we use a recurrence relation to stably update a running value so
* there aren't any large sums that can overflow
*/
for i, v in data {
x := (v - mean) / sd
x4 := x * x * x * x
ti1 := (T(i) + T(1))
avg += T((x4 - avg) / ti1)
}
return avg - T(3)
}
// skew calculates the mean and standard of deviation to find the skew from the data
@[inline]
pub fn skew[T](data []T) T {
data_mean := mean[T](data)
sd := population_stddev_mean[T](data, data_mean)
return skew_mean_stddev[T](data, data_mean, sd)
}
// skew_mean_stddev calculates the skewness of data
pub fn skew_mean_stddev[T](data []T, mean T, sd T) T {
if data.len == 0 {
return T(0)
}
mut skew := T(0) // find the sum of the cubed deviations, normalized by the sd.
/*
we use a recurrence relation to stably update a running value so
* there aren't any large sums that can overflow
*/
for i, v in data {
x := (v - mean) / sd
x3 := x * x * x
skew += T((x3 - skew) / (T(i) + T(1)))
}
return skew
}
// quantile calculates quantile points
// for more reference
// https://en.wikipedia.org/wiki/Quantile
pub fn quantile[T](sorted_data []T, f T) !T {
if sorted_data.len == 0 {
return T(0)
}
index := f * (sorted_data.len - 1)
lhs := int(index)
if lhs < 0 || lhs >= sorted_data.len {
return error('index out of range')
} else if lhs == sorted_data.len - 1 {
return sorted_data[lhs]
} else {
if lhs >= sorted_data.len - 1 {
return error('index out of range')
}
delta := index - T(lhs)
return T((1 - delta) * sorted_data[lhs] + delta * sorted_data[(lhs + 1)])
}
}