import math import math.stats fn test_freq() { // Tests were also verified on Wolfram Alpha data := [10.0, 10.0, 5.9, 2.7] mut o := stats.freq(data, 10.0) assert o == 2 o = stats.freq(data, 2.7) assert o == 1 o = stats.freq(data, 15) assert o == 0 // test for int, i64, f32 array assert stats.freq[int]([1, 3, 5, 7], 5) == 1 assert stats.freq[i64]([i64(1), 3, 5, 7], 5) == 1 assert stats.freq[f32]([f32(1.0), 3, 5, 7], 3.0) == 1 } fn test_mean() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.mean(data) assert math.alike(o, 5.7625) data = [-3.0, 67.31, 4.4, 1.89] o = stats.mean(data) assert math.alike(o, 17.65) data = [12.0, 7.88, 76.122, 54.83] o = stats.mean(data) assert math.alike(o, 37.708) // test for int, i64, f32 array assert stats.mean[int]([1, 2]) == 1 assert stats.mean[i64]([i64(1), 2]) == 1 o = stats.mean[f32]([f32(1.0), 3, 5, 7]) assert math.alike(o, 4.0) } fn test_geometric_mean() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.geometric_mean(data) assert math.alike(o, 5.159931624158176) data = [-3.0, 67.31, 4.4, 1.89] o = stats.geometric_mean(data) assert math.is_nan(o) // Because in math it yields a complex number data = [12.0, 7.88, 76.122, 54.83] o = stats.geometric_mean(data) assert math.alike(o, 25.064495926603378) // test for int, i64, f32 array assert stats.geometric_mean[int]([1, 3, 5, 7]) == 3 assert stats.geometric_mean[i64]([i64(1), 3, 5, 7]) == 3 o = stats.geometric_mean[f32]([f32(1.0), 3, 5, 7]) assert math.alike(o, 3.2010858058929443) } fn test_harmonic_mean() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.harmonic_mean(data) assert math.alike(o, 4.626518526616179) data = [-3.0, 67.31, 4.4, 1.89] o = stats.harmonic_mean(data) assert math.alike(o, 9.134577425605814) data = [12.0, 7.88, 76.122, 54.83] o = stats.harmonic_mean(data) assert math.alike(o, 16.555477040152685) // test for int, i64, f32 array assert stats.harmonic_mean[int]([1, 2]) == 1 assert stats.harmonic_mean[i64]([i64(1), 2]) == 1 o = stats.harmonic_mean[f32]([f32(1.0), 3, 5, 7]) assert math.alike(o, 2.3863635063171387) } fn test_median() { // Tests were also verified on Wolfram Alpha // Assumes sorted array // Even mut data := [2.7, 4.45, 5.9, 10.0] mut o := stats.median(data) assert math.alike(o, 5.175000000000001) data = [-3.0, 1.89, 4.4, 67.31] o = stats.median(data) assert math.alike(o, 3.145) data = [7.88, 12.0, 54.83, 76.122] o = stats.median(data) assert math.alike(o, 33.415) // Odd data = [2.7, 4.45, 5.9, 10.0, 22] o = stats.median(data) assert math.alike(o, 5.9) data = [-3.0, 1.89, 4.4, 9, 67.31] o = stats.median(data) assert math.alike(o, 4.4) data = [7.88, 3.3, 12.0, 54.83, 76.122] o = stats.median(data) assert math.alike(o, 12.0) // test for int, i64, f32 array assert stats.median[int]([1, 2, 3]) == 2 assert stats.median[i64]([i64(1), 2, 3]) == 2 o = stats.median[f32]([f32(1.0), 3, 5, 7]) assert math.alike(o, 4) } fn test_mode() { // Tests were also verified on Wolfram Alpha mut data := [2.7, 2.7, 4.45, 5.9, 10.0] mut o := stats.mode(data) assert math.alike(o, 2.7) data = [-3.0, 1.89, 1.89, 1.89, 9, 4.4, 4.4, 9, 67.31] o = stats.mode(data) assert math.alike(o, 1.89) // Testing greedy nature data = [2.0, 4.0, 2.0, 4.0] o = stats.mode(data) assert math.alike(o, 2.0) // test for int, i64, f32 array assert stats.mode[int]([1, 2, 3, 1]) == 1 assert stats.mode[i64]([i64(1), 2, 3, 1]) == 1 o = stats.mode[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 3) } fn test_rms() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.rms(data) assert math.alike(o, 6.362045661577729) data = [-3.0, 67.31, 4.4, 1.89] o = stats.rms(data) assert math.alike(o, 33.77339263384714) data = [12.0, 7.88, 76.122, 54.83] o = stats.rms(data) assert math.alike(o, 47.45256100570337) // test for int, i64, f32 array assert stats.rms[int]([1, 2, 3, 1]) == 1 assert stats.rms[i64]([i64(1), 2, 3, 1]) == 1 o = stats.rms[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 4.312771797180176) } fn test_population_variance() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.population_variance(data) assert math.alike(o, 7.269218749999999) data = [-3.0, 67.31, 4.4, 1.89] o = stats.population_variance(data) assert math.alike(o, 829.119550) data = [12.0, 7.88, 76.122, 54.83] o = stats.population_variance(data) assert math.alike(o, 829.852282) // test for int, i64, f32 array assert stats.population_variance[int]([1, 2, 3, 1]) == 1 assert stats.population_variance[i64]([i64(1), 2, 3, 1]) == 1 o = stats.population_variance[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 4.159999847412109) } fn test_sample_variance() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.sample_variance(data) assert math.alike(o, 9.692291666666666) data = [-3.0, 67.31, 4.4, 1.89] o = stats.sample_variance(data) assert math.alike(o, 1105.4927333333333) data = [12.0, 7.88, 76.122, 54.83] o = stats.sample_variance(data) assert math.alike(o, 1106.4697093333332) // test for int, i64, f32 array assert stats.sample_variance[int]([1, 2, 3, 1]) == 1 assert stats.sample_variance[i64]([i64(1), 2, 3, 1]) == 1 o = stats.sample_variance[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 5.199999809265137) } fn test_population_stddev() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.population_stddev(data) assert math.alike(o, 2.6961488738569312) data = [-3.0, 67.31, 4.4, 1.89] o = stats.population_stddev(data) assert math.alike(o, 28.794436094495754) data = [12.0, 7.88, 76.122, 54.83] o = stats.population_stddev(data) assert math.alike(o, 28.80715678438259) // test for int, i64, f32 array assert stats.population_stddev[int]([1, 2, 3, 1]) == 1 assert stats.population_stddev[i64]([i64(1), 2, 3, 1]) == 1 o = stats.population_stddev[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 2.0396077632904053) } fn test_sample_stddev() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.sample_stddev(data) assert math.alike(o, 3.1132445561932114) data = [-3.0, 67.31, 4.4, 1.89] o = stats.sample_stddev(data) assert math.alike(o, 33.2489508606412) data = [12.0, 7.88, 76.122, 54.83] o = stats.sample_stddev(data) assert math.alike(o, 33.26363944810208) // test for int, i64, f32 array assert stats.sample_stddev[int]([1, 2, 3, 1]) == 1 assert stats.sample_stddev[i64]([i64(1), 2, 3, 1]) == 1 o = stats.sample_stddev[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 2.280350923538208) } fn test_absdev() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.absdev(data) assert o == 2.187500048428774 assert math.alike(o, 2.187500048428774) data = [-3.0, 67.31, 4.4, 1.89] o = stats.absdev(data) assert o == 24.829999923706055 assert math.alike(o, 24.829999923706055) data = [12.0, 7.88, 76.122, 54.83] o = stats.absdev(data) assert o == 27.76800012588501 assert math.alike(o, 27.76800012588501) // test for int, i64, f32 array assert stats.absdev[int]([1, 2, 3, 1]) == 0 assert stats.absdev[i64]([i64(1), 2, 3, 1]) == 0 o = stats.absdev[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 1.7599999904632568) } fn test_tss() { mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.tss(data) assert math.alike(o, 29.076874999999998) data = [-3.0, 67.31, 4.4, 1.89] o = stats.tss(data) assert math.alike(o, 3316.4782) data = [12.0, 7.88, 76.122, 54.83] o = stats.tss(data) assert math.alike(o, 3319.409128) // test for int, i64, f32 array assert stats.tss[int]([1, 2, 3, 1]) == 5 assert stats.tss[i64]([i64(1), 2, 3, 1]) == 5 o = stats.tss[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 20.799999237060547) } fn test_min() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.min(data) assert math.alike(o, 2.7) data = [-3.0, 67.31, 4.4, 1.89] o = stats.min(data) assert math.alike(o, -3.0) data = [12.0, 7.88, 76.122, 54.83] o = stats.min(data) assert math.alike(o, 7.88) // test for int, i64, f32 array assert stats.min[int]([1, 2, 3, 1]) == 1 assert stats.min[i64]([i64(1), 2, 3, 1]) == 1 o = stats.min[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 1.0) } fn test_max() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.max(data) assert math.alike(o, 10.0) data = [-3.0, 67.31, 4.4, 1.89] o = stats.max(data) assert math.alike(o, 67.31) data = [12.0, 7.88, 76.122, 54.83] o = stats.max(data) assert math.alike(o, 76.122) // test for int, i64, f32 array assert stats.max[int]([1, 2, 3, 1]) == 3 assert stats.max[i64]([i64(1), 2, 3, 1]) == 3 o = stats.max[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 7.0) } fn test_minmax() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o_min, mut o_max := stats.minmax(data) assert [o_min, o_max] == [2.7, 10.0] data = [-3.0, 67.31, 4.4, 1.89] o_min, o_max = stats.minmax(data) assert [o_min, o_max] == [-3.0, 67.31] data = [12.0, 7.88, 76.122, 54.83] o_min, o_max = stats.minmax(data) assert [o_min, o_max] == [7.88, 76.122] // test for int, i64, f32 array o_min_int, o_max_int := stats.minmax[int]([1, 2, 3, 1]) assert [o_min_int, o_max_int] == [1, 3] o_min_i64, o_max_i64 := stats.minmax[i64]([i64(1), 2, 3, 1]) assert [o_min_i64, o_max_i64] == [i64(1), 3] o_min_f32, o_max_f32 := stats.minmax[f32]([f32(1.0), 3, 5, 7, 3]) assert [o_min_f32, o_max_f32] == [f32(1.0), 7] } fn test_min_index() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.min_index(data) assert o == 3 data = [-3.0, 67.31, 4.4, 1.89] o = stats.min_index(data) assert o == 0 data = [12.0, 7.88, 76.122, 54.83] o = stats.min_index(data) assert o == 1 // test for int, i64, f32 array assert stats.min_index[int]([1, 2, 3, 1]) == 0 assert stats.min_index[i64]([i64(1), 2, 3, 1]) == 0 assert stats.min_index[f32]([f32(1.0), 3, 5, 7, 3]) == 0 } fn test_max_index() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.max_index(data) assert o == 0 data = [-3.0, 67.31, 4.4, 1.89] o = stats.max_index(data) assert o == 1 data = [12.0, 7.88, 76.122, 54.83] o = stats.max_index(data) assert o == 2 // test for int, i64, f32 array assert stats.max_index[int]([1, 2, 3, 1]) == 2 assert stats.max_index[i64]([i64(1), 2, 3, 1]) == 2 assert stats.max_index[f32]([f32(1.0), 3, 5, 7, 3]) == 3 } fn test_minmax_index() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o_min, mut o_max := stats.minmax_index(data) assert [o_min, o_max] == [3, 0] data = [-3.0, 67.31, 4.4, 1.89] o_min, o_max = stats.minmax_index(data) assert [o_min, o_max] == [0, 1] data = [12.0, 7.88, 76.122, 54.83] o_min, o_max = stats.minmax_index(data) assert [o_min, o_max] == [1, 2] // test for int, i64, f32 array o_min, o_max = stats.minmax_index[int]([1, 2, 3, 1]) assert [o_min, o_max] == [0, 2] o_min, o_max = stats.minmax_index[i64]([i64(1), 2, 3, 1]) assert [o_min, o_max] == [0, 2] o_min, o_max = stats.minmax_index[f32]([f32(1.0), 3, 5, 7, 3]) assert [o_min, o_max] == [0, 3] } fn test_range() { // Tests were also verified on Wolfram Alpha mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.range(data) assert math.alike(o, 7.3) data = [-3.0, 67.31, 4.4, 1.89] o = stats.range(data) assert math.alike(o, 70.31) data = [12.0, 7.88, 76.122, 54.83] o = stats.range(data) assert math.alike(o, 68.242) // test for int, i64, f32 array assert stats.range[int]([1, 2, 3, 1]) == 2 assert stats.range[i64]([i64(1), 2, 3, 1]) == 2 assert stats.range[f32]([f32(1.0), 3, 5, 7, 3]) == 6.0 } fn test_covariance() { mut data0 := [10.0, 4.45, 5.9, 2.7] mut data1 := [5.0, 14.45, -15.9, 22.7] mut o := stats.covariance(data0, data1) assert math.alike(o, -17.37078125) data0 = [-3.0, 67.31, 4.4, 1.89] data1 = [5.0, 77.31, 44.4, 11.89] o = stats.covariance(data0, data1) assert math.alike(o, 740.06955) data0 = [12.0, 7.88, 76.122, 54.83] data1 = [2.0, 5.88, 7.122, 5.83] o = stats.covariance(data0, data1) assert math.alike(o, 36.650282000000004) // test for int, i64, f32 array data0_int := [1, 2, 3, 1] data1_int := [11, 22, 33, 11] o_int := stats.covariance[int](data0_int, data1_int) assert o_int == 8 data0_i64 := [i64(1), 2, 3, 1] data1_i64 := [i64(11), 22, 33, 11] o_i64 := stats.covariance[i64](data0_i64, data1_i64) assert o_i64 == 8 data0_f32 := [f32(1.0), 2, 3, 1] data1_f32 := [f32(11.0), 22, 33, 11] o_f32 := stats.covariance[f32](data0_f32, data1_f32) assert math.alike(o_f32, 7.562500476837158) } fn test_lag1_autocorrelation() { mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.lag1_autocorrelation(data) mut e := 0.0 assert math.alike(o, -0.5542285481446095) data = [-3.0, 67.31, 4.4, 1.89] o = stats.lag1_autocorrelation(data) assert math.alike(o, -0.5102510654033415) data = [12.0, 7.88, 76.122, 54.83] o = stats.lag1_autocorrelation(data) e = 0.10484450460892072 assert math.alike(o, e), diff(o, e) // test for int, i64, f32 array assert stats.lag1_autocorrelation[int]([1, 2, 3, 1]) == 0 assert stats.lag1_autocorrelation[i64]([i64(1), 2, 3, 1]) == 0 o = stats.lag1_autocorrelation[f32]([f32(1.0), 3, 5, 7, 3]) assert math.alike(o, 0.1975308507680893) } fn diff(actual f64, expected f64) string { return '\n actual:${actual:40.35f}\nexpected:${expected:40.35f}\n diff:${actual - expected:40.35f}' } fn test_kurtosis() { mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.kurtosis(data) mut e := -1.0443212849233845 assert math.close(o, e), diff(o, e) data = [-3.0, 67.31, 4.4, 1.89] o = stats.kurtosis(data) e = -0.6884953374814851 assert math.close(o, e), diff(o, e) data = [12.0, 7.88, 76.122, 54.83] o = stats.kurtosis(data) assert math.alike(o, -1.7323772836921467) // test for int, i64, f32 array assert stats.kurtosis[int]([1, 2, 3, 1]) == 1 assert stats.kurtosis[i64]([i64(1), 2, 3, 1]) == 1 o = stats.kurtosis[f32]([f32(1.0), 3, 5, 7, 3]) e = -1.044378399848938 assert math.alike(o, e), diff(o, e) } fn test_skew() { mut data := [10.0, 4.45, 5.9, 2.7] mut o := stats.skew(data) mut e := 0.5754021106320453 assert math.veryclose(o, e), diff(o, e) data = [-3.0, 67.31, 4.4, 1.89] o = stats.skew(data) e = 1.1248733711136492 assert math.veryclose(o, e), diff(o, e) data = [12.0, 7.88, 76.122, 54.83] o = stats.skew(data) e = 0.19007911706827735 assert math.alike(o, e), diff(o, e) // test for int, i64, f32 array assert stats.skew[int]([1, 2, 3, 1]) == 2 assert stats.skew[i64]([i64(1), 2, 3, 1]) == 2 o = stats.skew[f32]([f32(1.0), 3, 5, 7, 3]) e = 0.27154541015625 assert math.alike(o, e), diff(o, e) } fn test_quantile() { // Assumes sorted array mut data := [2.7, 4.45, 5.9, 10.0] mut o := stats.quantile(data, 0.1)! assert math.alike(o, 3.225) data = [-3.0, 1.89, 4.4, 67.31] o = stats.quantile(data, 0.2)! assert math.alike(o, -0.06599999999999961) data = [7.88, 12.0, 54.83, 76.122] o = stats.quantile(data, 0.3)! assert math.alike(o, 11.588) stats.quantile(data, -0.3) or { assert err.msg() == 'index out of range' } stats.quantile(data, 2) or { assert err.msg() == 'index out of range' } // test for int, i64, f32 array assert stats.quantile[int]([1, 2, 3], 1)! == 3 assert stats.quantile[i64]([i64(1), 2, 3], 1)! == 3 o = stats.quantile[f32]([f32(1.0), 3, 5, 7], 0.22)! assert math.alike(o, 2.319999933242798) } fn test_passing_empty() { data := []f64{} assert stats.freq(data, 0) == 0 assert stats.mean(data) == 0 assert stats.geometric_mean(data) == 0 assert stats.harmonic_mean(data) == 0 assert stats.median(data) == 0 assert stats.mode(data) == 0 assert stats.rms(data) == 0 assert stats.population_variance(data) == 0 assert stats.sample_variance(data) == 0 assert stats.population_stddev(data) == 0 assert stats.sample_stddev(data) == 0 assert stats.absdev(data) == 0 assert stats.min(data) == 0 assert stats.max(data) == 0 o_min, o_max := stats.minmax(data) assert [o_min, o_max] == [f64(0), 0] assert stats.min_index(data) == 0 assert stats.max_index(data) == 0 o_min_index, o_max_index := stats.minmax_index(data) assert [o_min_index, o_max_index] == [0, 0] assert stats.range(data) == 0 assert stats.covariance(data, data) == 0 assert stats.lag1_autocorrelation(data) == 0 assert stats.kurtosis(data) == 0 assert stats.skew(data) == 0 assert stats.quantile(data, 0)! == 0 } fn test_passing_one() { data := [100.0] assert stats.freq(data, 100.0) == 1 assert stats.mean(data) == 100.0 assert stats.geometric_mean(data) == 100.0 assert stats.harmonic_mean(data) == 100.0 assert stats.median(data) == 100.0 assert stats.mode(data) == 100.0 assert stats.rms(data) == 100.0 assert stats.population_variance(data) == 0.0 assert math.is_nan(stats.sample_variance(data)) assert stats.population_stddev(data) == 0.0 assert math.is_nan(stats.sample_stddev(data)) assert stats.absdev(data) == 0.0 assert stats.min(data) == 100.0 assert stats.max(data) == 100.0 o_min, o_max := stats.minmax(data) assert [o_min, o_max] == [f64(100), 100] assert stats.min_index(data) == 0 assert stats.max_index(data) == 0 o_min_index, o_max_index := stats.minmax_index(data) assert [o_min_index, o_max_index] == [0, 0] assert stats.range(data) == 0 assert stats.covariance(data, data) == 0 assert math.is_nan(stats.lag1_autocorrelation(data)) assert math.is_nan(stats.kurtosis(data)) assert math.is_nan(stats.skew(data)) assert stats.quantile(data, 0)! == 100 }