// Copyright (c) 2019-2024 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. // Package sha512 implements the SHA-384, SHA-512, SHA-512/224, and SHA-512/256 // hash algorithms as defined in FIPS 180-4. // Based off: https://github.com/golang/go/tree/master/src/crypto/sha512 // Last commit: https://github.com/golang/go/commit/3ce865d7a0b88714cc433454ae2370a105210c01 module sha512 import crypto import encoding.binary // size is the size, in bytes, of a SHA-512 checksum. pub const size = 64 // size224 is the size, in bytes, of a SHA-512/224 checksum. pub const size224 = 28 // size256 is the size, in bytes, of a SHA-512/256 checksum. pub const size256 = 32 // size384 is the size, in bytes, of a SHA-384 checksum. pub const size384 = 48 // block_size is the block size, in bytes, of the SHA-512/224, // SHA-512/256, SHA-384 and SHA-512 hash functions. pub const block_size = 128 const chunk = 128 const init0 = u64(0x6a09e667f3bcc908) const init1 = u64(0xbb67ae8584caa73b) const init2 = u64(0x3c6ef372fe94f82b) const init3 = u64(0xa54ff53a5f1d36f1) const init4 = u64(0x510e527fade682d1) const init5 = u64(0x9b05688c2b3e6c1f) const init6 = u64(0x1f83d9abfb41bd6b) const init7 = u64(0x5be0cd19137e2179) const init0_224 = u64(0x8c3d37c819544da2) const init1_224 = u64(0x73e1996689dcd4d6) const init2_224 = u64(0x1dfab7ae32ff9c82) const init3_224 = u64(0x679dd514582f9fcf) const init4_224 = u64(0x0f6d2b697bd44da8) const init5_224 = u64(0x77e36f7304c48942) const init6_224 = u64(0x3f9d85a86a1d36c8) const init7_224 = u64(0x1112e6ad91d692a1) const init0_256 = u64(0x22312194fc2bf72c) const init1_256 = u64(0x9f555fa3c84c64c2) const init2_256 = u64(0x2393b86b6f53b151) const init3_256 = u64(0x963877195940eabd) const init4_256 = u64(0x96283ee2a88effe3) const init5_256 = u64(0xbe5e1e2553863992) const init6_256 = u64(0x2b0199fc2c85b8aa) const init7_256 = u64(0x0eb72ddc81c52ca2) const init0_384 = u64(0xcbbb9d5dc1059ed8) const init1_384 = u64(0x629a292a367cd507) const init2_384 = u64(0x9159015a3070dd17) const init3_384 = u64(0x152fecd8f70e5939) const init4_384 = u64(0x67332667ffc00b31) const init5_384 = u64(0x8eb44a8768581511) const init6_384 = u64(0xdb0c2e0d64f98fa7) const init7_384 = u64(0x47b5481dbefa4fa4) // Digest represents the partial evaluation of a checksum. struct Digest { mut: h []u64 x []u8 nx int len u64 function crypto.Hash } // free the resources taken by the Digest `d` @[unsafe] pub fn (mut d Digest) free() { $if prealloc { return } unsafe { d.x.free() d.h.free() } } fn (mut d Digest) init() { d.h = []u64{len: (8)} d.x = []u8{len: chunk} d.reset() } // reset the state of the Digest `d` pub fn (mut d Digest) reset() { match d.function { .sha384 { d.h[0] = init0_384 d.h[1] = init1_384 d.h[2] = init2_384 d.h[3] = init3_384 d.h[4] = init4_384 d.h[5] = init5_384 d.h[6] = init6_384 d.h[7] = init7_384 } .sha512_224 { d.h[0] = init0_224 d.h[1] = init1_224 d.h[2] = init2_224 d.h[3] = init3_224 d.h[4] = init4_224 d.h[5] = init5_224 d.h[6] = init6_224 d.h[7] = init7_224 } .sha512_256 { d.h[0] = init0_256 d.h[1] = init1_256 d.h[2] = init2_256 d.h[3] = init3_256 d.h[4] = init4_256 d.h[5] = init5_256 d.h[6] = init6_256 d.h[7] = init7_256 } else { d.h[0] = init0 d.h[1] = init1 d.h[2] = init2 d.h[3] = init3 d.h[4] = init4 d.h[5] = init5 d.h[6] = init6 d.h[7] = init7 } } d.nx = 0 d.len = 0 } fn (d &Digest) clone() &Digest { return &Digest{ ...d h: d.h.clone() x: d.x.clone() } } // internal fn new_digest(hash crypto.Hash) &Digest { mut d := &Digest{ function: hash } d.init() return d } // new returns a new Digest (implementing hash.Hash) computing the SHA-512 checksum. pub fn new() &Digest { return new_digest(.sha512) } // new512_224 returns a new Digest (implementing hash.Hash) computing the SHA-512/224 checksum. pub fn new512_224() &Digest { return new_digest(.sha512_224) } // new512_256 returns a new Digest (implementing hash.Hash) computing the SHA-512/256 checksum. pub fn new512_256() &Digest { return new_digest(.sha512_256) } // new384 returns a new Digest (implementing hash.Hash) computing the SHA-384 checksum. pub fn new384() &Digest { return new_digest(.sha384) } // write writes the contents of `p_` to the internal hash representation. pub fn (mut d Digest) write(p_ []u8) !int { unsafe { mut p := p_ nn := p.len d.len += u64(nn) if d.nx > 0 { n := copy(mut d.x[d.nx..], p) d.nx += n if d.nx == chunk { block(mut d, d.x) d.nx = 0 } if n >= p.len { p = [] } else { p = p[n..] } } if p.len >= chunk { n := p.len & ~(chunk - 1) block(mut d, p[..n]) if n >= p.len { p = [] } else { p = p[n..] } } if p.len > 0 { d.nx = copy(mut d.x, p) } return nn } } // sum returns the SHA512 or SHA384 checksum of digest with the data bytes in `b_in` pub fn (d &Digest) sum(b_in []u8) []u8 { // Make a copy of d so that caller can keep writing and summing. mut d0 := d.clone() hash := d0.checksum() mut b_out := b_in.clone() match d0.function { .sha384 { for b in hash[..size384] { b_out << b } } .sha512_224 { for b in hash[..size224] { b_out << b } } .sha512_256 { for b in hash[..size256] { b_out << b } } else { for b in hash { b_out << b } } } return b_out } // checksum returns the current byte checksum of the Digest, // it is an internal method and is not recommended because its results are not idempotent. fn (mut d Digest) checksum() []u8 { // Padding. Add a 1 bit and 0 bits until 112 bytes mod 128. mut len := d.len mut tmp := []u8{len: (128)} tmp[0] = 0x80 if int(len) % 128 < 112 { d.write(tmp[..112 - int(len) % 128]) or { panic(err) } } else { d.write(tmp[..128 + 112 - int(len) % 128]) or { panic(err) } } // Length in bits. len <<= u64(3) binary.big_endian_put_u64(mut tmp, u64(0)) // upper 64 bits are always zero, because len variable has type u64 binary.big_endian_put_u64(mut tmp[8..], len) d.write(tmp[..16]) or { panic(err) } if d.nx != 0 { panic('d.nx != 0') } mut digest := []u8{len: size} binary.big_endian_put_u64(mut digest, d.h[0]) binary.big_endian_put_u64(mut digest[8..], d.h[1]) binary.big_endian_put_u64(mut digest[16..], d.h[2]) binary.big_endian_put_u64(mut digest[24..], d.h[3]) binary.big_endian_put_u64(mut digest[32..], d.h[4]) binary.big_endian_put_u64(mut digest[40..], d.h[5]) if d.function != .sha384 { binary.big_endian_put_u64(mut digest[48..], d.h[6]) binary.big_endian_put_u64(mut digest[56..], d.h[7]) } return digest } // sum512 returns the SHA512 checksum of the data. pub fn sum512(data []u8) []u8 { mut d := new_digest(.sha512) d.write(data) or { panic(err) } return d.checksum() } // sum384 returns the SHA384 checksum of the data. pub fn sum384(data []u8) []u8 { mut d := new_digest(.sha384) d.write(data) or { panic(err) } sum := d.checksum() mut sum384 := []u8{len: size384} copy(mut sum384, sum[..size384]) return sum384 } // sum512_224 returns the Sum512/224 checksum of the data. pub fn sum512_224(data []u8) []u8 { mut d := new_digest(.sha512_224) d.write(data) or { panic(err) } sum := d.checksum() mut sum224 := []u8{len: size224} copy(mut sum224, sum[..size224]) return sum224 } // sum512_256 returns the Sum512/256 checksum of the data. pub fn sum512_256(data []u8) []u8 { mut d := new_digest(.sha512_256) d.write(data) or { panic(err) } sum := d.checksum() mut sum256 := []u8{len: size256} copy(mut sum256, sum[..size256]) return sum256 } fn block(mut dig Digest, p []u8) { // For now just use block_generic until we have specific // architecture optimized versions block_generic(mut dig, p) } // size returns the size of the checksum in bytes. pub fn (d &Digest) size() int { match d.function { .sha512_224 { return size224 } .sha512_256 { return size256 } .sha384 { return size384 } else { return size } } } // block_size returns the block size of the checksum in bytes. pub fn (d &Digest) block_size() int { return block_size } // hexhash returns a hexadecimal SHA512 hash sum `string` of `s`. pub fn hexhash(s string) string { return sum512(s.bytes()).hex() } // hexhash_384 returns a hexadecimal SHA384 hash sum `string` of `s`. pub fn hexhash_384(s string) string { return sum384(s.bytes()).hex() } // hexhash_512_224 returns a hexadecimal SHA512/224 hash sum `string` of `s`. pub fn hexhash_512_224(s string) string { return sum512_224(s.bytes()).hex() } // hexhash_512_256 returns a hexadecimal 512/256 hash sum `string` of `s`. pub fn hexhash_512_256(s string) string { return sum512_256(s.bytes()).hex() }