// This module implements a basic HTTP server using epoll for handling multiple client connections efficiently. // The server is designed to be non-blocking and uses multiple threads to handle incoming requests concurrently. // // Performance Considerations: // - Non-blocking I/O: The server uses non-blocking sockets to ensure that it can handle multiple connections without being blocked by any single connection. // - Epoll: The use of epoll allows the server to efficiently monitor multiple file descriptors to see if I/O is possible on any of them. // - Threading: The server spawns multiple threads to handle client requests, which can improve performance on multi-core systems. // - Memory Management: Care is taken to allocate and free memory appropriately to avoid memory leaks and ensure efficient memory usage. // - Error Handling: The server includes error handling to manage and log errors without crashing, ensuring robustness and reliability. // - SO_REUSEPORT: The server sets the SO_REUSEPORT socket option to allow multiple sockets on the same host and port, which can improve performance in certain scenarios. // - Connection Handling: The server efficiently handles client connections, including accepting new connections, reading requests, and sending responses. // - Mutex Locking: The server uses mutex locks to manage access to shared resources, ensuring thread safety while minimizing contention. module main const tiny_bad_request_response = 'HTTP/1.1 400 Bad Request\r\nContent-Length: 0\r\nConnection: close\r\n\r\n'.bytes() #include #include $if !windows { #include #include } fn C.socket(socket_family int, socket_type int, protocol int) int fn C.bind(sockfd int, addr &C.sockaddr_in, addrlen u32) int fn C.send(__fd int, __buf voidptr, __n usize, __flags int) int fn C.recv(__fd int, __buf voidptr, __n usize, __flags int) int fn C.setsockopt(__fd int, __level int, __optname int, __optval voidptr, __optlen u32) int fn C.listen(__fd int, __n int) int fn C.perror(s &u8) fn C.close(fd int) int fn C.accept(sockfd int, address &C.sockaddr_in, addrlen &u32) int fn C.htons(__hostshort u16) u16 fn C.epoll_create1(__flags int) int fn C.epoll_ctl(__epfd int, __op int, __fd int, __event &C.epoll_event) int fn C.epoll_wait(__epfd int, __events &C.epoll_event, __maxevents int, __timeout int) int fn C.fcntl(fd int, cmd int, arg int) int struct C.in_addr { s_addr u32 } struct C.sockaddr_in { sin_family u16 sin_port u16 sin_addr C.in_addr sin_zero [8]u8 } union C.epoll_data { ptr voidptr fd int u32 u32 u64 u64 } struct C.epoll_event { events u32 data C.epoll_data } struct Server { pub: port int = 3000 mut: socket_fd int epoll_fds [max_thread_pool_size]int threads [max_thread_pool_size]thread request_handler fn (HttpRequest) ![]u8 @[required] } const max_connection_size = 1024 const max_thread_pool_size = 8 fn set_blocking(fd int, blocking bool) { flags := C.fcntl(fd, C.F_GETFL, 0) if flags == -1 { // TODO: better error handling eprintln(@LOCATION) return } if blocking { // This removes the O_NONBLOCK flag from flags and set it. C.fcntl(fd, C.F_SETFL, flags & ~C.O_NONBLOCK) } else { // This adds the O_NONBLOCK flag from flags and set it. C.fcntl(fd, C.F_SETFL, flags | C.O_NONBLOCK) } } fn close_socket(fd int) { C.close(fd) } fn create_server_socket(port int) int { // Create a socket with non-blocking mode server_fd := C.socket(C.AF_INET, C.SOCK_STREAM, 0) if server_fd < 0 { eprintln(@LOCATION) C.perror(c'Socket creation failed') return -1 } // set_blocking(server_fd, false) // Enable SO_REUSEPORT opt := 1 if C.setsockopt(server_fd, C.SOL_SOCKET, C.SO_REUSEPORT, &opt, sizeof(opt)) < 0 { eprintln(@LOCATION) C.perror(c'setsockopt SO_REUSEPORT failed') close_socket(server_fd) return -1 } server_addr := C.sockaddr_in{ sin_family: u16(C.AF_INET) sin_port: C.htons(port) sin_addr: C.in_addr{u32(C.INADDR_ANY)} sin_zero: [8]u8{} } if C.bind(server_fd, voidptr(&server_addr), sizeof(server_addr)) < 0 { eprintln(@LOCATION) C.perror(c'Bind failed') close_socket(server_fd) return -1 } if C.listen(server_fd, max_connection_size) < 0 { eprintln(@LOCATION) C.perror(c'Listen failed') close_socket(server_fd) return -1 } return server_fd } // Function to add a file descriptor to the epoll instance fn add_fd_to_epoll(epoll_fd int, fd int, events u32) int { mut ev := C.epoll_event{ events: events } ev.data.fd = fd if C.epoll_ctl(epoll_fd, C.EPOLL_CTL_ADD, fd, &ev) == -1 { eprintln(@LOCATION) C.perror(c'epoll_ctl') return -1 } return 0 } // Function to remove a file descriptor from the epoll instance fn remove_fd_from_epoll(epoll_fd int, fd int) { C.epoll_ctl(epoll_fd, C.EPOLL_CTL_DEL, fd, C.NULL) } fn handle_accept_loop(mut server Server) { for { client_fd := C.accept(server.socket_fd, C.NULL, C.NULL) if client_fd < 0 { // Check for EAGAIN or EWOULDBLOCK, usually represented by errno 11. if C.errno == C.EAGAIN || C.errno == C.EWOULDBLOCK { break // No more incoming connections; exit loop. } eprintln(@LOCATION) C.perror(c'Accept failed') return } unsafe { // Distribute client connections among epoll_fds epoll_fd := server.epoll_fds[client_fd % max_thread_pool_size] if add_fd_to_epoll(epoll_fd, client_fd, u32(C.EPOLLIN | C.EPOLLET)) == -1 { close_socket(client_fd) } } } } fn handle_client_closure(server &Server, client_fd int) { unsafe { remove_fd_from_epoll(client_fd, client_fd) } } fn process_events(mut server Server, epoll_fd int) { for { events := [max_connection_size]C.epoll_event{} num_events := C.epoll_wait(epoll_fd, &events[0], max_connection_size, -1) for i := 0; i < num_events; i++ { if events[i].events & u32((C.EPOLLHUP | C.EPOLLERR)) != 0 { handle_client_closure(server, unsafe { events[i].data.fd }) continue } if events[i].events & u32(C.EPOLLIN) != 0 { request_buffer := [140]u8{} bytes_read := C.recv(unsafe { events[i].data.fd }, &request_buffer[0], 140 - 1, 0) if bytes_read > 0 { mut readed_request_buffer := []u8{cap: bytes_read} unsafe { readed_request_buffer.push_many(&request_buffer[0], bytes_read) } decoded_http_request := decode_http_request(readed_request_buffer) or { eprintln('Error decoding request ${err}') C.send(unsafe { events[i].data.fd }, tiny_bad_request_response.data, tiny_bad_request_response.len, 0) handle_client_closure(server, unsafe { events[i].data.fd }) continue } // This lock is a workaround for avoiding race condition in router.params // This slows down the server, but it's a temporary solution response_buffer := server.request_handler(decoded_http_request) or { eprintln('Error handling request ${err}') C.send(unsafe { events[i].data.fd }, tiny_bad_request_response.data, tiny_bad_request_response.len, 0) handle_client_closure(server, unsafe { events[i].data.fd }) continue } C.send(unsafe { events[i].data.fd }, response_buffer.data, response_buffer.len, 0) handle_client_closure(server, unsafe { events[i].data.fd }) } else if bytes_read == 0 || (bytes_read < 0 && C.errno != C.EAGAIN && C.errno != C.EWOULDBLOCK) { handle_client_closure(server, unsafe { events[i].data.fd }) } } } } } fn (mut server Server) run() { $if windows { eprintln('Windows is not supported yet') return } server.socket_fd = create_server_socket(server.port) if server.socket_fd < 0 { return } for i := 0; i < max_thread_pool_size; i++ { server.epoll_fds[i] = C.epoll_create1(0) if server.epoll_fds[i] < 0 { C.perror(c'epoll_create1 failed') close_socket(server.socket_fd) return } if add_fd_to_epoll(server.epoll_fds[i], server.socket_fd, u32(C.EPOLLIN)) == -1 { close_socket(server.socket_fd) close_socket(server.epoll_fds[i]) return } server.threads[i] = spawn process_events(mut server, server.epoll_fds[i]) } println('listening on http://localhost:${server.port}/') handle_accept_loop(mut server) }