mirror of
https://github.com/vlang/v.git
synced 2025-09-13 22:42:26 +03:00
x.crypto.ascon: improve the core of Ascon permutation routine (#25278)
This commit is contained in:
parent
919c68e6f9
commit
f16452d3a6
7 changed files with 83 additions and 103 deletions
|
@ -1,15 +1,17 @@
|
||||||
# ascon
|
# ascon
|
||||||
|
|
||||||
`ascon` is a implementation of Ascon-Based Cryptography module implemented in pure V language.
|
`ascon` is an implementation of Ascon-Based Cryptography module implemented in pure V language.
|
||||||
This module was mostly based on NIST Special Publication of 800 NIST SP 800-232 document.
|
This module was mostly based on NIST Special Publication of 800 NIST SP 800-232 document.
|
||||||
Its describes an Ascon-Based Lightweight Cryptography Standards for Constrained Devices
|
Its describes an Ascon-Based Lightweight Cryptography Standards for Constrained Devices
|
||||||
thats provides Authenticated Encryption, Hash, and Extendable Output Functions.
|
thats provides Authenticated Encryption, Hash, and Extendable Output Functions.
|
||||||
See the [NIST.SP.800-232 Standard](https://doi.org/10.6028/NIST.SP.800-232) for more detail.
|
See the [NIST.SP.800-232 Standard](https://doi.org/10.6028/NIST.SP.800-232) for more detail.
|
||||||
|
|
||||||
This module does not fully implements all the features availables on the document.
|
This module mostly implements all the features availables on the document.
|
||||||
Its currently implements:
|
Its currently implements:
|
||||||
- `Ascon-Hash256`, Ascon-based hashing implementation that produces 256-bits output.
|
- `Ascon-Hash256`, Ascon-based hashing implementation that produces 256-bits output.
|
||||||
- `Ascon-XOF128`, Ascon-based eXtendible Output Function (XOF) where the output size of
|
- `Ascon-XOF128`, Ascon-based eXtendable Output Function (XOF) where the output size of
|
||||||
the hash of the message can be selected by the user.
|
the hash of the message can be selected by the user.
|
||||||
- `Ascon-CXOF128`, a customized XOF that allows users to specify a customization
|
- `Ascon-CXOF128`, a customized XOF that allows users to specify a customization
|
||||||
string and choose the output size of the message hash.
|
string and choose the output size of the message hash.
|
||||||
|
- `Ascon-AEAD128`, an Authenticated Encryption with Additional Data (AEAD) Scheme based
|
||||||
|
on Ascon-family crypto.
|
||||||
|
|
|
@ -181,7 +181,7 @@ pub fn (mut c Aead128) encrypt(msg []u8, nonce []u8, ad []u8) ![]u8 {
|
||||||
c.State.e4 = n1
|
c.State.e4 = n1
|
||||||
|
|
||||||
// Update state by permutation
|
// Update state by permutation
|
||||||
ascon_pnr(mut c.State, 12)
|
ascon_pnr(mut c.State, ascon_prnd_12)
|
||||||
// XOR-ing with the cipher's key
|
// XOR-ing with the cipher's key
|
||||||
c.State.e3 ^= c.key[0]
|
c.State.e3 ^= c.key[0]
|
||||||
c.State.e4 ^= c.key[1]
|
c.State.e4 ^= c.key[1]
|
||||||
|
@ -229,7 +229,7 @@ pub fn (mut c Aead128) decrypt(ciphertext []u8, nonce []u8, ad []u8) ![]u8 {
|
||||||
c.State.e4 = n1
|
c.State.e4 = n1
|
||||||
|
|
||||||
// scrambled with permutation routine
|
// scrambled with permutation routine
|
||||||
ascon_pnr(mut c.State, 12)
|
ascon_pnr(mut c.State, ascon_prnd_12)
|
||||||
// xor-ing with the cipher's key
|
// xor-ing with the cipher's key
|
||||||
c.State.e3 ^= c.key[0]
|
c.State.e3 ^= c.key[0]
|
||||||
c.State.e4 ^= c.key[1]
|
c.State.e4 ^= c.key[1]
|
||||||
|
@ -288,7 +288,7 @@ fn aead128_init(mut s State, key []u8, nonce []u8) (u64, u64) {
|
||||||
s.e4 = n1
|
s.e4 = n1
|
||||||
|
|
||||||
// updates State using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12], S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
|
// updates State using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12], S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
|
||||||
ascon_pnr(mut s, 12)
|
ascon_pnr(mut s, ascon_prnd_12)
|
||||||
|
|
||||||
// Then XORing the secret key 𝐾 into the last 128 bits of internal state:
|
// Then XORing the secret key 𝐾 into the last 128 bits of internal state:
|
||||||
// S ← S ⊕ (0¹⁹² ∥ 𝐾).
|
// S ← S ⊕ (0¹⁹² ∥ 𝐾).
|
||||||
|
@ -312,7 +312,7 @@ fn aead128_process_ad(mut s State, ad []u8) {
|
||||||
s.e1 ^= binary.little_endian_u64(block[8..16])
|
s.e1 ^= binary.little_endian_u64(block[8..16])
|
||||||
|
|
||||||
// Apply permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] to the state
|
// Apply permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] to the state
|
||||||
ascon_pnr(mut s, 8)
|
ascon_pnr(mut s, ascon_prnd_8)
|
||||||
// Updates index
|
// Updates index
|
||||||
ad_length -= aead128_block_size
|
ad_length -= aead128_block_size
|
||||||
ad_idx += aead128_block_size
|
ad_idx += aead128_block_size
|
||||||
|
@ -339,7 +339,7 @@ fn aead128_process_ad(mut s State, ad []u8) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Apply permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] to the state
|
// Apply permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] to the state
|
||||||
ascon_pnr(mut s, 8)
|
ascon_pnr(mut s, ascon_prnd_8)
|
||||||
}
|
}
|
||||||
// The final step of processing associated data is to update the state
|
// The final step of processing associated data is to update the state
|
||||||
// with a constant that provides domain separation.
|
// with a constant that provides domain separation.
|
||||||
|
@ -361,7 +361,7 @@ fn aead128_process_msg(mut out []u8, mut s State, msg []u8) int {
|
||||||
binary.little_endian_put_u64(mut out[pos..pos + 8], s.e0)
|
binary.little_endian_put_u64(mut out[pos..pos + 8], s.e0)
|
||||||
binary.little_endian_put_u64(mut out[pos + 8..], s.e1)
|
binary.little_endian_put_u64(mut out[pos + 8..], s.e1)
|
||||||
// apply permutation
|
// apply permutation
|
||||||
ascon_pnr(mut s, 8)
|
ascon_pnr(mut s, ascon_prnd_8)
|
||||||
|
|
||||||
// updates index
|
// updates index
|
||||||
mlen -= aead128_block_size
|
mlen -= aead128_block_size
|
||||||
|
@ -413,7 +413,7 @@ fn aead128_partial_dec(mut out []u8, mut s State, cmsg []u8) {
|
||||||
s.e0 = c0
|
s.e0 = c0
|
||||||
s.e1 = c1
|
s.e1 = c1
|
||||||
|
|
||||||
ascon_pnr(mut s, 8)
|
ascon_pnr(mut s, ascon_prnd_8)
|
||||||
// updates index
|
// updates index
|
||||||
pos += aead128_block_size
|
pos += aead128_block_size
|
||||||
cmsg_len -= aead128_block_size
|
cmsg_len -= aead128_block_size
|
||||||
|
@ -448,7 +448,7 @@ fn aead128_finalize(mut s State, k0 u64, k1 u64) {
|
||||||
s.e2 ^= k0
|
s.e2 ^= k0
|
||||||
s.e3 ^= k1
|
s.e3 ^= k1
|
||||||
// then updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12]
|
// then updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12]
|
||||||
ascon_pnr(mut s, 12)
|
ascon_pnr(mut s, ascon_prnd_12)
|
||||||
|
|
||||||
// Finally, the tag 𝑇 is generated by XORing the key with the last 128 bits of the state:
|
// Finally, the tag 𝑇 is generated by XORing the key with the last 128 bits of the state:
|
||||||
// 𝑇 ← 𝑆[192∶319] ⊕ 𝐾.
|
// 𝑇 ← 𝑆[192∶319] ⊕ 𝐾.
|
||||||
|
|
|
@ -10,6 +10,10 @@ module ascon
|
||||||
// constants for up to 16 rounds to accommodate potential functionality extensions in the future.
|
// constants for up to 16 rounds to accommodate potential functionality extensions in the future.
|
||||||
const max_nr_perm = 16
|
const max_nr_perm = 16
|
||||||
|
|
||||||
|
// The number how many round(s) for the Ascon permutation routine called.
|
||||||
|
const ascon_prnd_8 = 8
|
||||||
|
const ascon_prnd_12 = 12
|
||||||
|
|
||||||
// The constants to derive round constants of the Ascon permutations
|
// The constants to derive round constants of the Ascon permutations
|
||||||
// See Table 5. of NIST SP 800-232 docs
|
// See Table 5. of NIST SP 800-232 docs
|
||||||
//
|
//
|
||||||
|
@ -26,72 +30,74 @@ const max_nr_perm = 16
|
||||||
const rnc = [u8(0x3c), 0x2d, 0x1e, 0x0f, 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, 0x78,
|
const rnc = [u8(0x3c), 0x2d, 0x1e, 0x0f, 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87, 0x78,
|
||||||
0x69, 0x5a, 0x4b]
|
0x69, 0x5a, 0x4b]
|
||||||
|
|
||||||
// ascon_pnr is ascon permutation routine with specified numbers of round nr, where 1 ≤ nr ≤ 16
|
// ascon_pnr is the core of Ascon family permutation routine with specified numbers of round nr, where 1 ≤ nr ≤ 16
|
||||||
|
// Its consist of iterations of the round function that is defined as the composition of three steps, ie:
|
||||||
|
// 1. the constant-addition layer (see Sec. 3.2),
|
||||||
|
// 2. the substitution layer (see Sec.3.3), and,
|
||||||
|
// 3. the linear diffusion layer (Sec 3.4)
|
||||||
@[direct_array_access]
|
@[direct_array_access]
|
||||||
fn ascon_pnr(mut s State, nr int) {
|
fn ascon_pnr(mut s State, nr int) {
|
||||||
// We dont allow nr == 0
|
// We dont allow nr == 0
|
||||||
if nr < 1 || nr > 16 {
|
if nr < 1 || nr > 16 {
|
||||||
panic('Invalid round number')
|
panic('Invalid round number')
|
||||||
}
|
}
|
||||||
|
// Ascon permutation routine
|
||||||
for i := max_nr_perm - nr; i < max_nr_perm; i++ {
|
for i := max_nr_perm - nr; i < max_nr_perm; i++ {
|
||||||
ascon_perm(mut s, rnc[i])
|
// 3.2 Constant-Addition Layer step
|
||||||
|
//
|
||||||
|
// The constant-addition layer adds a 64-bit round constant 𝑐𝑖
|
||||||
|
// to 𝑆₂ in round 𝑖, for 𝑖 ≥ 0, ie, this is equivalent to applying
|
||||||
|
// the constant to only the least significant eight bits of 𝑆₂
|
||||||
|
s.e2 ^= rnc[i]
|
||||||
|
|
||||||
|
// 3.3. Substitution Layer
|
||||||
|
// The substitution layer updates the state S with 64 parallel applications of the 5-bit
|
||||||
|
// substitution box SBOX
|
||||||
|
s.e0 ^= s.e4
|
||||||
|
s.e4 ^= s.e3
|
||||||
|
s.e2 ^= s.e1
|
||||||
|
|
||||||
|
t0 := s.e4 ^ (~s.e0 & s.e1)
|
||||||
|
t1 := s.e0 ^ (~s.e1 & s.e2)
|
||||||
|
t2 := s.e1 ^ (~s.e2 & s.e3)
|
||||||
|
t3 := s.e2 ^ (~s.e3 & s.e4)
|
||||||
|
t4 := s.e3 ^ (~s.e4 & s.e0)
|
||||||
|
|
||||||
|
s.e0 = t1
|
||||||
|
s.e1 = t2
|
||||||
|
s.e2 = t3
|
||||||
|
s.e3 = t4
|
||||||
|
s.e4 = t0
|
||||||
|
|
||||||
|
s.e1 ^= s.e0
|
||||||
|
s.e0 ^= s.e4
|
||||||
|
s.e3 ^= s.e2
|
||||||
|
s.e2 = ~(s.e2)
|
||||||
|
|
||||||
|
// 3.4. Linear Diffusion Layer
|
||||||
|
//
|
||||||
|
// The linear diffusion layer provides diffusion within each 64-bit word S,
|
||||||
|
// defined as :
|
||||||
|
// Σ0(𝑆0) = 𝑆0 ⊕ (𝑆0 ⋙ 19) ⊕ (𝑆0 ⋙ 28)
|
||||||
|
// Σ1(𝑆1) = 𝑆1 ⊕ (𝑆1 ⋙ 61) ⊕ (𝑆1 ⋙ 39)
|
||||||
|
// Σ2(𝑆2) = 𝑆2 ⊕ (𝑆2 ⋙ 1) ⊕ (𝑆2 ⋙ 6)
|
||||||
|
// Σ3(𝑆3) = 𝑆3 ⊕ (𝑆3 ⋙ 10) ⊕ (𝑆3 ⋙ 17)
|
||||||
|
// Σ4(𝑆4) = 𝑆4 ⊕ (𝑆4 ⋙ 7) ⊕ (𝑆4 ⋙ 41)
|
||||||
|
//
|
||||||
|
// This diffusion layer, especially on the bits right rotation part is a most widely called
|
||||||
|
// for Ascon permutation routine. So, even bits rotation almost efficient on most platform,
|
||||||
|
// to reduce overhead on function call, we work on the raw bits right rotation here.
|
||||||
|
// Bits right rotation, basically can be defined as:
|
||||||
|
// ror = (x >> n) | x << (64 - n) for some u64 x
|
||||||
|
//
|
||||||
|
s.e0 ^= (s.e0 >> 19 | (s.e0 << (64 - 19))) ^ (s.e0 >> 28 | (s.e0 << (64 - 28)))
|
||||||
|
s.e1 ^= (s.e1 >> 61 | (s.e1 << (64 - 61))) ^ (s.e1 >> 39 | (s.e1 << (64 - 39)))
|
||||||
|
s.e2 ^= (s.e2 >> 1 | (s.e2 << (64 - 1))) ^ (s.e2 >> 6 | (s.e2 << (64 - 6))) //
|
||||||
|
s.e3 ^= (s.e3 >> 10 | (s.e3 << (64 - 10))) ^ (s.e3 >> 17 | (s.e3 << (64 - 17)))
|
||||||
|
s.e4 ^= (s.e4 >> 7 | (s.e4 << (64 - 7))) ^ (s.e4 >> 41 | (s.e4 << (64 - 41)))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ascon_perm was the main permutations routine in Ascon-family crypto. Its consist of
|
|
||||||
// iterations of the round function that is defined as the composition of three steps, ie:
|
|
||||||
// 1. the constant-addition layer (see Sec. 3.2),
|
|
||||||
// 2. the substitution layer (see Sec.3.3), and,
|
|
||||||
// 3. the linear diffusion layer
|
|
||||||
fn ascon_perm(mut s State, c u8) {
|
|
||||||
// 3.2 Constant-Addition Layer step
|
|
||||||
//
|
|
||||||
// The constant-addition layer adds a 64-bit round constant 𝑐𝑖
|
|
||||||
// to 𝑆₂ in round 𝑖, for 𝑖 ≥ 0, ie, this is equivalent to applying
|
|
||||||
// the constant to only the least significant eight bits of 𝑆₂
|
|
||||||
s.e2 ^= c
|
|
||||||
|
|
||||||
// 3.3. Substitution Layer
|
|
||||||
// The substitution layer updates the state S with 64 parallel applications of the 5-bit
|
|
||||||
// substitution box SBOX
|
|
||||||
s.e0 ^= s.e4
|
|
||||||
s.e4 ^= s.e3
|
|
||||||
s.e2 ^= s.e1
|
|
||||||
|
|
||||||
t0 := s.e4 ^ (~s.e0 & s.e1)
|
|
||||||
t1 := s.e0 ^ (~s.e1 & s.e2)
|
|
||||||
t2 := s.e1 ^ (~s.e2 & s.e3)
|
|
||||||
t3 := s.e2 ^ (~s.e3 & s.e4)
|
|
||||||
t4 := s.e3 ^ (~s.e4 & s.e0)
|
|
||||||
|
|
||||||
s.e0 = t1
|
|
||||||
s.e1 = t2
|
|
||||||
s.e2 = t3
|
|
||||||
s.e3 = t4
|
|
||||||
s.e4 = t0
|
|
||||||
|
|
||||||
s.e1 ^= s.e0
|
|
||||||
s.e0 ^= s.e4
|
|
||||||
s.e3 ^= s.e2
|
|
||||||
s.e2 = ~(s.e2)
|
|
||||||
|
|
||||||
// 3.4. Linear Diffusion Layer
|
|
||||||
//
|
|
||||||
// The linear diffusion layer provides diffusion within each 64-bit word S,
|
|
||||||
// defined as :
|
|
||||||
// Σ0(𝑆0) = 𝑆0 ⊕ (𝑆0 ⋙ 19) ⊕ (𝑆0 ⋙ 28)
|
|
||||||
// Σ1(𝑆1) = 𝑆1 ⊕ (𝑆1 ⋙ 61) ⊕ (𝑆1 ⋙ 39)
|
|
||||||
// Σ2(𝑆2) = 𝑆2 ⊕ (𝑆2 ⋙ 1) ⊕ (𝑆2 ⋙ 6)
|
|
||||||
// Σ3(𝑆3) = 𝑆3 ⊕ (𝑆3 ⋙ 10) ⊕ (𝑆3 ⋙ 17)
|
|
||||||
// Σ4(𝑆4) = 𝑆4 ⊕ (𝑆4 ⋙ 7) ⊕ (𝑆4 ⋙ 41)
|
|
||||||
|
|
||||||
s.e0 ^= ascon_rotate_right(s.e0, 19) ^ ascon_rotate_right(s.e0, 28)
|
|
||||||
s.e1 ^= ascon_rotate_right(s.e1, 61) ^ ascon_rotate_right(s.e1, 39)
|
|
||||||
s.e2 ^= ascon_rotate_right(s.e2, 1) ^ ascon_rotate_right(s.e2, 6)
|
|
||||||
s.e3 ^= ascon_rotate_right(s.e3, 10) ^ ascon_rotate_right(s.e3, 17)
|
|
||||||
s.e4 ^= ascon_rotate_right(s.e4, 7) ^ ascon_rotate_right(s.e4, 41)
|
|
||||||
}
|
|
||||||
|
|
||||||
// State is structure represents Ascon state. Its operates on the 320-bit opaque,
|
// State is structure represents Ascon state. Its operates on the 320-bit opaque,
|
||||||
// which is represented as five of 64-bit words.
|
// which is represented as five of 64-bit words.
|
||||||
@[noinit]
|
@[noinit]
|
||||||
|
|
|
@ -5,23 +5,6 @@
|
||||||
module ascon
|
module ascon
|
||||||
|
|
||||||
// This test mostly taken from https://docs.rs/ascon/latest/src/ascon/lib.rs.html
|
// This test mostly taken from https://docs.rs/ascon/latest/src/ascon/lib.rs.html
|
||||||
fn test_ascon_round_one() {
|
|
||||||
mut s := State{
|
|
||||||
e0: u64(0x0123456789abcdef)
|
|
||||||
e1: 0x23456789abcdef01
|
|
||||||
e2: 0x456789abcdef0123
|
|
||||||
e3: 0x6789abcdef012345
|
|
||||||
e4: 0x89abcde01234567f
|
|
||||||
}
|
|
||||||
ascon_perm(mut s, 0x1f)
|
|
||||||
|
|
||||||
assert s.e0 == u64(0x3c1748c9be2892ce)
|
|
||||||
assert s.e1 == u64(0x5eafb305cd26164f)
|
|
||||||
assert s.e2 == u64(0xf9470254bb3a4213)
|
|
||||||
assert s.e3 == u64(0xf0428daf0c5d3948)
|
|
||||||
assert s.e4 == u64(0x281375af0b294899)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn test_ascon_round_p6() {
|
fn test_ascon_round_p6() {
|
||||||
mut s := State{
|
mut s := State{
|
||||||
e0: u64(0x0123456789abcdef)
|
e0: u64(0x0123456789abcdef)
|
||||||
|
|
|
@ -33,7 +33,7 @@ fn (mut d Digest) finish() {
|
||||||
d.State.e0 ^= load_bytes(d.buf[..d.length], d.length)
|
d.State.e0 ^= load_bytes(d.buf[..d.length], d.length)
|
||||||
|
|
||||||
// Permutation step was done in squeezing-phase
|
// Permutation step was done in squeezing-phase
|
||||||
// ascon_pnr(mut d.State, 12)
|
// ascon_pnr(mut d.State, ascon_prnd_12)
|
||||||
|
|
||||||
// zeroing Digest buffer
|
// zeroing Digest buffer
|
||||||
d.length = 0
|
d.length = 0
|
||||||
|
@ -70,7 +70,7 @@ fn (mut d Digest) absorb(msg_ []u8) int {
|
||||||
// If this d.buf length has reached block_size bytes, absorb it.
|
// If this d.buf length has reached block_size bytes, absorb it.
|
||||||
if d.length == block_size {
|
if d.length == block_size {
|
||||||
d.State.e0 ^= binary.little_endian_u64(d.buf)
|
d.State.e0 ^= binary.little_endian_u64(d.buf)
|
||||||
ascon_pnr(mut d.State, 12)
|
ascon_pnr(mut d.State, ascon_prnd_12)
|
||||||
// reset the internal buffer
|
// reset the internal buffer
|
||||||
d.length = 0
|
d.length = 0
|
||||||
d.buf.reset()
|
d.buf.reset()
|
||||||
|
@ -87,7 +87,7 @@ fn (mut d Digest) absorb(msg_ []u8) int {
|
||||||
for msg.len >= block_size {
|
for msg.len >= block_size {
|
||||||
d.State.e0 ^= binary.little_endian_u64(msg[0..block_size])
|
d.State.e0 ^= binary.little_endian_u64(msg[0..block_size])
|
||||||
msg = msg[block_size..]
|
msg = msg[block_size..]
|
||||||
ascon_pnr(mut d.State, 12)
|
ascon_pnr(mut d.State, ascon_prnd_12)
|
||||||
}
|
}
|
||||||
// If there are partial block, just stored into buffer.
|
// If there are partial block, just stored into buffer.
|
||||||
if msg.len > 0 {
|
if msg.len > 0 {
|
||||||
|
@ -113,14 +113,14 @@ fn (mut d Digest) squeeze(mut dst []u8) int {
|
||||||
}
|
}
|
||||||
// The squeezing phase begins after msg is absorbed with an
|
// The squeezing phase begins after msg is absorbed with an
|
||||||
// permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state:
|
// permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state:
|
||||||
ascon_pnr(mut d.State, 12)
|
ascon_pnr(mut d.State, ascon_prnd_12)
|
||||||
|
|
||||||
mut pos := 0
|
mut pos := 0
|
||||||
mut clen := dst.len
|
mut clen := dst.len
|
||||||
// process for full block size
|
// process for full block size
|
||||||
for clen >= block_size {
|
for clen >= block_size {
|
||||||
binary.little_endian_put_u64(mut dst[pos..pos + 8], d.State.e0)
|
binary.little_endian_put_u64(mut dst[pos..pos + 8], d.State.e0)
|
||||||
ascon_pnr(mut d.State, 12)
|
ascon_pnr(mut d.State, ascon_prnd_12)
|
||||||
pos += block_size
|
pos += block_size
|
||||||
clen -= block_size
|
clen -= block_size
|
||||||
}
|
}
|
||||||
|
|
|
@ -8,12 +8,6 @@ module ascon
|
||||||
import math.bits
|
import math.bits
|
||||||
import encoding.binary
|
import encoding.binary
|
||||||
|
|
||||||
// rotate_right_64 rotates x right by k bits
|
|
||||||
fn rotate_right_64(x u64, k int) u64 {
|
|
||||||
// call rotate_left_64(x, -k).
|
|
||||||
return bits.rotate_left_64(x, -k)
|
|
||||||
}
|
|
||||||
|
|
||||||
// clear_bytes clears the bytes of x in n byte
|
// clear_bytes clears the bytes of x in n byte
|
||||||
@[inline]
|
@[inline]
|
||||||
fn clear_bytes(x u64, n int) u64 {
|
fn clear_bytes(x u64, n int) u64 {
|
||||||
|
@ -100,8 +94,3 @@ fn store_bytes(mut out []u8, x u64, n int) {
|
||||||
out[i] = get_byte(x, i)
|
out[i] = get_byte(x, i)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@[inline]
|
|
||||||
fn ascon_rotate_right(x u64, n int) u64 {
|
|
||||||
return (x >> n) | x << (64 - n)
|
|
||||||
}
|
|
||||||
|
|
|
@ -305,7 +305,7 @@ pub fn (mut x CXof128) free() {
|
||||||
fn cxof128_absorb_custom_string(mut s State, cs []u8) {
|
fn cxof128_absorb_custom_string(mut s State, cs []u8) {
|
||||||
// absorb Z0, the length of the customization string (in bits) encoded as a u64
|
// absorb Z0, the length of the customization string (in bits) encoded as a u64
|
||||||
s.e0 ^= u64(cs.len) << 3
|
s.e0 ^= u64(cs.len) << 3
|
||||||
ascon_pnr(mut s, 12)
|
ascon_pnr(mut s, ascon_prnd_12)
|
||||||
|
|
||||||
// absorb the customization string
|
// absorb the customization string
|
||||||
mut zlen := cs.len
|
mut zlen := cs.len
|
||||||
|
@ -313,7 +313,7 @@ fn cxof128_absorb_custom_string(mut s State, cs []u8) {
|
||||||
for zlen >= block_size {
|
for zlen >= block_size {
|
||||||
block := unsafe { cs[zidx..zidx + block_size] }
|
block := unsafe { cs[zidx..zidx + block_size] }
|
||||||
s.e0 ^= binary.little_endian_u64(block)
|
s.e0 ^= binary.little_endian_u64(block)
|
||||||
ascon_pnr(mut s, 12)
|
ascon_pnr(mut s, ascon_prnd_12)
|
||||||
|
|
||||||
// updates a index
|
// updates a index
|
||||||
zlen -= block_size
|
zlen -= block_size
|
||||||
|
@ -323,5 +323,5 @@ fn cxof128_absorb_custom_string(mut s State, cs []u8) {
|
||||||
last_block := unsafe { cs[zidx..] }
|
last_block := unsafe { cs[zidx..] }
|
||||||
s.e0 ^= load_bytes(last_block, last_block.len)
|
s.e0 ^= load_bytes(last_block, last_block.len)
|
||||||
s.e0 ^= pad(last_block.len)
|
s.e0 ^= pad(last_block.len)
|
||||||
ascon_pnr(mut s, 12)
|
ascon_pnr(mut s, ascon_prnd_12)
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue