diff --git a/vlib/x/crypto/curve25519/README.md b/vlib/x/crypto/curve25519/README.md new file mode 100644 index 0000000000..f677e0b58e --- /dev/null +++ b/vlib/x/crypto/curve25519/README.md @@ -0,0 +1,53 @@ +# curve25519 +------------ +This module implement Diffie-Hellman key exchange mechanism (ECDHA) based on elliptic curve +known as Curve25519 in pure V. + +## About curve25519 + +From wikipedia, Curve25519 is an elliptic curve used in elliptic-curve cryptography (ECC) +offering 128 bits of security (256-bit key size) and designed for use with the elliptic +curve Diffie–Hellman (ECDH) key agreement scheme. +It is one of the fastest curves in ECC, and is not covered by any known patents. +The reference implementation is public domain software. The original Curve25519 paper defined it as +a Diffie–Hellman (DH) function. +Daniel J. Bernstein has since proposed that the name "Curve25519" be used for the underlying curve, +and the name "X25519" for the DH function Curve25519 is an elliptic curve +that offers 128 security bits +and is designed for use in the Elliptic Curve Diffie-Hellman (ECDH) key agreement key design scheme. + +Examples +-------- +```v +import x.crypto.curve25519 + +fn main() { + // For example, two peers, Alice and Bob, want to create a shared secret together + // + // Alice generates a private key + mut alice_pvkey := curve25519.PrivateKey.new()! + // Alice's PublicKey to be shared with Bob + alice_pbkey := alice_pvkey.public_key()! + + // The other peer, Bob, has a different private key + mut bob_pvkey := curve25519.PrivateKey.new()! + // Bob's public key to be shared with Alice + bob_pbkey := bob_pvkey.public_key()! + + // Let the two peers exchange their respective public keys + // + // Alice derives the shared secret, using her own private key, and the public key that Bob shared + alice_shared_sec := curve25519.derive_shared_secret(mut alice_pvkey, bob_pbkey)! + + // Bob derives the shared secret, using his own private key, and the public key that Alice shared + bob_shared_sec := curve25519.derive_shared_secret(mut bob_pvkey, alice_pbkey)! + + // the two shared secrets (derived by Alice, and derived by Bob), should be the same + // + println(alice_shared_sec.hex()) // 49fd4a4d0637d2413cd501b20111fc50a592dc21460e45f451c03d1fd3cef900 + println(bob_shared_sec.hex()) // 49fd4a4d0637d2413cd501b20111fc50a592dc21460e45f451c03d1fd3cef900 + dump(alice_shared_sec == bob_shared_sec) // alice_shared_sec == bob_shared_sec: true + + assert alice_shared_sec == bob_shared_sec +} +``` \ No newline at end of file diff --git a/vlib/x/crypto/curve25519/curve25519.v b/vlib/x/crypto/curve25519/curve25519.v new file mode 100644 index 0000000000..f233b01f0b --- /dev/null +++ b/vlib/x/crypto/curve25519/curve25519.v @@ -0,0 +1,392 @@ +// Copyright © 2025 blackshirt. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// +// This module implements building block for elliptic-curve diffie-helman +// key exchange (ECDH) mechanism through curve25519 curve. +module curve25519 + +import crypto.rand +import crypto.internal.subtle +import crypto.ed25519.internal.edwards25519 + +// scalar_size is the size of the Curve25519 key +const scalar_size = 32 + +// point_size is the size of the Curve25519 point +const point_size = 32 + +// zero_point is point with 32 bytes length of zeros bytes +const zero_point = []u8{len: 32, init: u8(0x00)} + +// base_point is the canonical Curve25519 generator, encoded as a byte with value 9, +// followed by 31 zero bytes +const base_point = [u8(9), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0] + +// PrivateKey represents Curve25519 private key +@[noinit] +pub struct PrivateKey { +mut: + // boolean flag that tells this key should not be + // used again when its true. its set after .free call + done bool + // clamped key, 32 bytes length + key []u8 +} + +// new creates a new Curve25519 key using randomly generated bytes from `crypto.rand`. +@[direct_array_access] +pub fn PrivateKey.new() !&PrivateKey { + mut bytes := rand.read(scalar_size)! + // do bytes clamping + clamp(mut bytes)! + + if is_zero_point(bytes) || is_base_point(bytes) { + return error('PrivateKey.new: bytes zeros or base point') + } + + return &PrivateKey{ + key: bytes + } +} + +// new_from_seed creates a new Curve25519 key from provided seed bytes. +@[direct_array_access] +pub fn PrivateKey.new_from_seed(seed []u8) !&PrivateKey { + if seed.len != scalar_size { + return error('invalid scalar size') + } + mut bytes := seed.clone() + clamp(mut bytes)! + + if is_zero_point(bytes) || is_base_point(bytes) { + return error('PrivateKey.new_from_seed: bytes was zeros or base point') + } + return &PrivateKey{ + key: bytes + } +} + +// public_key returns the associated public key part of the PrivateKey. +@[direct_array_access] +pub fn (mut pv PrivateKey) public_key() !&PublicKey { + if pv.done { + return error('your key has been marked as freed') + } + out := x25519(mut pv.key, base_point)! + return &PublicKey{ + key: out + } +} + +// equal returns whether two private keys are equal. +@[direct_array_access] +pub fn (pv PrivateKey) equal(oth PrivateKey) bool { + if pv.done || oth.done { + panic('the key has been marked as freed') + } + if pv.key.len != scalar_size || oth.key.len != scalar_size { + return false + } + return subtle.constant_time_compare(pv.key, oth.key) == 1 +} + +// x25519 performs scalar multiplication between key and point and return another bytes (point). +@[direct_array_access] +pub fn (mut pv PrivateKey) x25519(point []u8) ![]u8 { + if pv.done { + return error('PrivateKey has been marked as freed') + } + if point.len != point_size { + return error('bad point size, should be 32') + } + // even technically its possible, but we limit to unallow it + if subtle.constant_time_compare(pv.key, point) == 1 { + return error('pv.key identical with point') + } + out := x25519(mut pv.key, point)! + + return out +} + +// bytes return a clone of the bytes of the underlying PrivateKey +pub fn (pv PrivateKey) bytes() ![]u8 { + if pv.done { + return error('PrivateKey has been marked as freed') + } + return pv.key.clone() +} + +// free releases underlying key. Dont use the key after calling .free +@[unsafe] +pub fn (mut pv PrivateKey) free() { + unsafe { pv.key.free() } + // sets flag to finish + pv.done = true +} + +// PublicKey represent Curve25519 key. +@[noinit] +pub struct PublicKey { +mut: + // 32 bytes length of scalar * point + key []u8 +} + +// new_from_bytes creates a new Curve25519 public key from provided bytes. +pub fn PublicKey.new_from_bytes(bytes []u8) !&PublicKey { + if bytes.len != point_size { + return error('PublicKey.new: bad bytes length') + } + // Refers to the D.J. Bernstein, the designer of the curve25519, public key validation + // in curve25519 is generally not needed for Diffie-Hellman key exchange. + // See https://cr.yp.to/ecdh.html#validate + // But there are availables suggestion to do validation on them spreads on the internet, likes + // bytes return the clone of the bytes of the underlying PublicKey + // - check the shared value and to raise exception if it is zero. + // - You can also bind the exchanged public keys to the shared keys, i.e., + // instead of using H(abG) as the shared keys, you should use H(aG || bG || abG) + // + // We only, check for zeros public key + if is_zero(bytes) { + return error('PublicKey.new: get zeros bytes') + } + + // otherwise, we can return it + return &PublicKey{ + key: bytes + } +} + +// equal tells whether two public keys are equal +pub fn (pb PublicKey) equal(other PublicKey) bool { + // different length, should not happen + if pb.key.len != point_size || other.key.len != point_size { + return false + } + return subtle.constant_time_compare(pb.key, other.key) == 1 +} + +// bytes return the clone of the bytes of the underlying PublicKey +pub fn (pb PublicKey) bytes() ![]u8 { + if pb.key.len != point_size { + return error('bad public key size') + } + return pb.key.clone() +} + +// SharedOpts is the configuration options to `derive_shared_secret` routine +@[params] +pub struct SharedOpts { +pub mut: + should_derive bool + derivator Derivator = RawDerivator{} + drv_opts DeriveOpts +} + +// DeriveOpts is config to drive the Derivator's derive operation. +@[params] +pub struct DeriveOpts {} + +// Derivator represent key derivation function +pub interface Derivator { + // derive transforms bytes in sec into another form of bytes. + derive(sec []u8, opt DeriveOpts) ![]u8 +} + +// RawDerivator was a simple derivator with no derivation behaviour. +struct RawDerivator {} + +fn (rd RawDerivator) derive(sec []u8, opt DeriveOpts) ![]u8 { + return sec +} + +// derive_shared_secret derives a shared secret between two peer's +// between first private key's peer and the second PublicKey's peer. +// Its accepts SharedOpts options to advance supports for other key derivation mechanism. +// +// 6. Diffie-Hellman with Curve25519 +// See https://datatracker.ietf.org/doc/html/rfc7748#section-6 +pub fn derive_shared_secret(mut local PrivateKey, remote PublicKey, opt SharedOpts) ![]u8 { + // check for safety + local_pubkey := local.public_key()! + if local_pubkey.equal(remote) { + return error('unallowed equal public key between peer') + } + // The local peer generates local private key, local_privkey, generates local public key, local_pubkey. + // and remote peer generates remote private key, ie, remote_privkey, + // with generated remote public key, remote_pubkey. + // Both now share shared = X25519(local_privkey, remote_pubkey) = X25519(remote_privkey, local_pubkey) + // as a shared secret, which is then used as a key or input to a key derivation function. + sec := local.x25519(remote.key)! + if is_zero(sec) { + return error('zeroes shared secret') + } + // you can choose this sec as an input into other key derivator, and pass this sec + // into provided derivator + if opt.should_derive { + // While the shared secret can be used directly, it's often recommended to apply + // a key derivation function (KDF), like HKDF to derive a more robust key for cryptographic operations. + new_sec := opt.derivator.derive(sec, opt.drv_opts)! + if is_zero(new_sec) { + return error('zeroes shared secret after derivation') + } + return new_sec + } + // otherwise, just return the sec as is. + return sec +} + +// x25519 returns the result of the scalar multiplication (`scalar` * `point`), +// according to RFC 7748, Section 5. scalar, point and the return value are slices of 32 bytes. +// The functions take a scalar and a `u-coordinate` as inputs and produce a `u-coordinate` as output. +// Although the functions work internally with integers, the inputs and +// outputs are 32-bytes length (for X25519). +// scalar can be generated at random, for example with `crypto.rand` and point should +// be either `base_point` or the output of another `x25519` call. +@[direct_array_access] +pub fn x25519(mut scalar []u8, point []u8) ![]u8 { + mut dst := []u8{len: 32} + // we do bytes clamping here, to make sure scalar was ready to use + clamp(mut scalar)! + return x25519_generic(mut dst, mut scalar, point) +} + +@[direct_array_access; inline] +fn x25519_generic(mut dst []u8, mut scalar []u8, point []u8) ![]u8 { + // we dont check arrays length here, its has been checked + // on the underlying scalar_mult routine + if is_base_point(point) { + scalar_base_mult(mut dst, mut scalar)! + // check for base_point result + if is_base_point(dst) { + return error('dst: get base_point') + } + } else { + // base := point.clone() + scalar_mult(mut dst, mut scalar, point)! + if is_zero_point(dst) { + return error('bad input point: low order point') + } + } + return dst +} + +// scalar_base_mult performs scalar * base_point +@[direct_array_access] +fn scalar_base_mult(mut dst []u8, mut scalar []u8) ! { + scalar_mult(mut dst, mut scalar, base_point)! +} + +// scalar_mult performs scalar multiplicatipn (scalar * point) on the curve25519 curve. +// for performance reason, scalar marked as mutable. +// scalar_mult is the main routine to perform scalar multiplication +// between scalar key and point on the curve25519 curve. +@[direct_array_access; inline] +fn scalar_mult(mut dst []u8, mut scalar []u8, point []u8) ! { + if dst.len != point_size { + return error('bad dst length') + } + if scalar.len != scalar_size { + return error('scalar.lenght != 32') + } + if point.len != point_size { + return error('point.lenght != 32') + } + // Note: we dont clamping scalar here, and responsible to the caller + // to do the clamping. Its assumed scalar has been clamped. + mut x1 := edwards25519.Element{} + mut x2 := edwards25519.Element{} + mut z2 := edwards25519.Element{} + mut x3 := edwards25519.Element{} + mut z3 := edwards25519.Element{} + mut tmp0 := edwards25519.Element{} + mut tmp1 := edwards25519.Element{} + + x1.set_bytes(point[..])! + x2.one() + x3.set(x1) + z3.one() + + mut swap := 0 + for pos := 254; pos >= 0; pos-- { + mut b := scalar[pos / 8] >> u32(pos & 7) + b &= 1 + swap = swap ^ int(b) + x2.swap(mut x3, swap) + z2.swap(mut z3, swap) + swap = int(b) + + tmp0.subtract(x3, z3) + tmp1.subtract(x2, z2) + x2.add(x2, z2) + z2.add(x3, z3) + z3.multiply(tmp0, x2) + z2.multiply(z2, tmp1) + tmp0.square(tmp1) + tmp1.square(x2) + x3.add(z3, z2) + z2.subtract(z3, z2) + x2.multiply(tmp1, tmp0) + tmp1.subtract(tmp1, tmp0) + z2.square(z2) + + z3.mult_32(tmp1, 121666) + x3.square(x3) + tmp0.add(tmp0, z3) + z3.multiply(x1, z2) + z2.multiply(tmp1, tmp0) + } + + x2.swap(mut x3, swap) + z2.swap(mut z3, swap) + + z2.invert(z2) + x2.multiply(x2, z2) + copy(mut dst, x2.bytes()) +} + +// Utility helpers +// + +@[direct_array_access; inline] +fn is_zero_point(point []u8) bool { + if point.len != point_size { + return false + } + return subtle.constant_time_compare(point, zero_point) == 1 +} + +@[direct_array_access; inline] +fn is_base_point(point []u8) bool { + if point.len != point_size { + return false + } + return subtle.constant_time_compare(point, base_point) == 1 +} + +// clamp clears out some bits of seed bytes +@[direct_array_access; inline] +fn clamp(mut seed []u8) ! { + if seed.len != scalar_size { + return error('bad seed sizes for clamp') + } + // According to RFC 7748, for x25519, in order to decode 32 random bytes + // as an integer scalar, set the three least significant bits of the first byte + // and the most significant bit of the last to zero, + // set the second most significant bit of the last byte to 1 + // + seed[0] &= 248 + seed[31] &= 127 + seed[31] |= 64 +} + +// is_zero returns whether seed is all zeroes in constant time. +fn is_zero(seed []u8) bool { + mut acc := u8(0) + for b in seed { + acc |= b + } + return acc == 0 +} diff --git a/vlib/x/crypto/curve25519/curve25519_test.v b/vlib/x/crypto/curve25519/curve25519_test.v new file mode 100644 index 0000000000..230a5abc82 --- /dev/null +++ b/vlib/x/crypto/curve25519/curve25519_test.v @@ -0,0 +1,408 @@ +// Copyright © 2025 blackshirt. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// +// This test mostly taken and adapted from the golang version of the same library. +module curve25519 + +import rand +import encoding.hex + +const bytes_error = 'byte-error-error'.repeat(2).bytes() // []u8{len:32} + +fn test_curve25519_shared_secret() ! { + // From RFC 7748 Test vector: + // Alice's private key, a: + a := hex.decode('77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a')! + // Alice's public key, X25519(a, 9): + a_pbk := hex.decode('8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a')! + // Bob's private key, b: + b := hex.decode('5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb')! + // Bob's public key, X25519(b, 9): + b_pbk := hex.decode('de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f')! + // Their shared secret, K: + k := hex.decode('4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742')! + + // check for alice generated public key was equal + mut a_pvk := PrivateKey.new_from_seed(a)! + assert a_pvk.public_key()!.bytes()! == a_pbk + + // check for Bob generated public key was equal + mut b_pvk := PrivateKey.new_from_seed(b)! + b_pubkey := b_pvk.public_key()! + assert b_pubkey.bytes()! == b_pbk + + // shared secret + sec := derive_shared_secret(mut a_pvk, b_pubkey)! + assert sec == k +} + +fn test_private_key() ! { + mut pv0 := PrivateKey.new()! + mut pv1 := pv0 + + // private key equality + assert pv0.equal(pv1) + assert pv0.bytes()! == pv1.bytes()! + + // public key equality + pb0 := pv0.public_key()! + pb1 := pv1.public_key()! + assert pb0.equal(pb1) + + // scalar multiplication + x0 := pv0.x25519(pb0.key)! + x1 := pv1.x25519(pb1.key)! + assert x0 == x1 + // free the resources + unsafe { + pv0.free() + pv1.free() + } +} + +// requirement: when receiving such an array, implementations of x25519 (but not x448) MUST +// mask the most significant bit in the final byte. +fn test_highbit_ignored() ! { + mut s := rand.bytes(32)! + mut u := rand.bytes(32)! + + mut hi0 := []u8{len: 32} + mut hi1 := []u8{len: 32} + + u[31] &= 0x7f + scalar_mult(mut hi0, mut s, u)! + + u[31] |= 0x80 + scalar_mult(mut hi1, mut s, u)! + + assert hi0 == hi1 +} + +fn test_x25519_basepoint() { + mut x := []u8{len: 32} + x[0] = 1 + + for i := 0; i < 200; i++ { + x = x25519(mut x, base_point) or { bytes_error } + assert x != bytes_error + } + expected_hex := '89161fde887b2b53de549af483940106ecc114d6982daa98256de23bdf77661a' + + result := hex.encode(x) + assert result == expected_hex +} + +struct LowOrderPoint { + point []u8 + err IError +} + +const loworder_points = [ + LowOrderPoint{[u8(0x00), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00], error('bad input point: low order point')}, + LowOrderPoint{[u8(0x01), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00], error('bad input point: low order point')}, + LowOrderPoint{[u8(0xe0), 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, + 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, + 0x16, 0x5f, 0x49, 0xb8, 0x00], error('bad input point: low order point')}, + LowOrderPoint{[u8(0x5f), 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, + 0x9c, 0x83, 0xef, 0x5b, 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, + 0xdd, 0xd0, 0x9f, 0x11, 0x57], error('bad input point: low order point')}, + LowOrderPoint{[u8(0xec), 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x7f], error('bad input point: low order point')}, + LowOrderPoint{[u8(0xed), 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x7f], error('bad input point: low order point')}, + LowOrderPoint{[u8(0xee), 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x7f], error('bad input point: low order point')}, +] + +fn test_low_order_points() ! { + nil_bytes := []u8{len: 32} + mut s := rand.bytes(scalar_size)! + for p in loworder_points { + out := x25519(mut s, p.point) or { + assert err == p.err + continue + } + + assert out != nil_bytes + } +} + +fn test_legacy_scalar_mult() ! { + for mut item in tests_vectors { + mut got := []u8{len: 32} + // clamp the input, because scalar_mult assumed its has been clamped + clamp(mut item.input)! + scalar_mult(mut got, mut item.input, item.base)! + assert got == item.expect + } +} + +fn test_x25519_scalar_mult() ! { + for i, mut item in tests_vectors { + got := x25519(mut item.input, item.base)! + + assert got == item.expect + + // using object based instances + mut pv := PrivateKey.new_from_seed(item.input)! + newpoint := pv.x25519(item.base)! + assert newpoint == item.expect + } +} + +struct Vectors { +mut: + input []u8 + base []u8 + expect []u8 +} + +const tests_vectors = [ + // from https://datatracker.ietf.org/doc/html/rfc7748#section-5.2 test vectors + Vectors{ + input: hex.decode('a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4')! + base: hex.decode('e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c')! + expect: hex.decode('c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552')! + }, + Vectors{ + input: hex.decode('4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d')! + base: hex.decode('e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493')! + expect: hex.decode('95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957')! + }, + Vectors{ + input: [u8(0x66), 0x8f, 0xb9, 0xf7, 0x6a, 0xd9, 0x71, 0xc8, 0x1a, 0xc9, 0x0, 0x7, 0x1a, + 0x15, 0x60, 0xbc, 0xe2, 0xca, 0x0, 0xca, 0xc7, 0xe6, 0x7a, 0xf9, 0x93, 0x48, 0x91, + 0x37, 0x61, 0x43, 0x40, 0x14] + base: [u8(0xdb), 0x5f, 0x32, 0xb7, 0xf8, 0x41, 0xe7, 0xa1, 0xa0, 0x9, 0x68, 0xef, 0xfd, + 0xed, 0x12, 0x73, 0x5f, 0xc4, 0x7a, 0x3e, 0xb1, 0x3b, 0x57, 0x9a, 0xac, 0xad, 0xea, + 0xe8, 0x9, 0x39, 0xa7, 0xdd] + expect: [u8(0x9), 0xd, 0x85, 0xe5, 0x99, 0xea, 0x8e, 0x2b, 0xee, 0xb6, 0x13, 0x4, 0xd3, + 0x7b, 0xe1, 0xe, 0xc5, 0xc9, 0x5, 0xf9, 0x92, 0x7d, 0x32, 0xf4, 0x2a, 0x9a, 0xa, 0xfb, + 0x3e, 0xb, 0x40, 0x74] + }, + Vectors{ + input: [u8(0x63), 0x66, 0x95, 0xe3, 0x4f, 0x75, 0xb9, 0xa2, 0x79, 0xc8, 0x70, 0x6f, 0xad, + 0x12, 0x89, 0xf2, 0xc0, 0xb1, 0xe2, 0x2e, 0x16, 0xf8, 0xb8, 0x86, 0x17, 0x29, 0xc1, + 0xa, 0x58, 0x29, 0x58, 0xaf] + base: [u8(0x9), 0xd, 0x7, 0x1, 0xf8, 0xfd, 0xe2, 0x8f, 0x70, 0x4, 0x3b, 0x83, 0xf2, 0x34, + 0x62, 0x25, 0x41, 0x9b, 0x18, 0xa7, 0xf2, 0x7e, 0x9e, 0x3d, 0x2b, 0xfd, 0x4, 0xe1, + 0xf, 0x3d, 0x21, 0x3e] + expect: [u8(0xbf), 0x26, 0xec, 0x7e, 0xc4, 0x13, 0x6, 0x17, 0x33, 0xd4, 0x40, 0x70, 0xea, + 0x67, 0xca, 0xb0, 0x2a, 0x85, 0xdc, 0x1b, 0xe8, 0xcf, 0xe1, 0xff, 0x73, 0xd5, 0x41, + 0xcc, 0x8, 0x32, 0x55, 0x6] + }, + Vectors{ + input: [u8(0x73), 0x41, 0x81, 0xcd, 0x1a, 0x94, 0x6, 0x52, 0x2a, 0x56, 0xfe, 0x25, 0xe4, + 0x3e, 0xcb, 0xf0, 0x29, 0x5d, 0xb5, 0xdd, 0xd0, 0x60, 0x9b, 0x3c, 0x2b, 0x4e, 0x79, + 0xc0, 0x6f, 0x8b, 0xd4, 0x6d] + base: [u8(0xf8), 0xa8, 0x42, 0x1c, 0x7d, 0x21, 0xa9, 0x2d, 0xb3, 0xed, 0xe9, 0x79, 0xe1, + 0xfa, 0x6a, 0xcb, 0x6, 0x2b, 0x56, 0xb1, 0x88, 0x5c, 0x71, 0xc5, 0x11, 0x53, 0xcc, + 0xb8, 0x80, 0xac, 0x73, 0x15] + expect: [u8(0x11), 0x76, 0xd0, 0x16, 0x81, 0xf2, 0xcf, 0x92, 0x9d, 0xa2, 0xc7, 0xa3, 0xdf, + 0x66, 0xb5, 0xd7, 0x72, 0x9f, 0xd4, 0x22, 0x22, 0x6f, 0xd6, 0x37, 0x42, 0x16, 0xbf, + 0x7e, 0x2, 0xfd, 0xf, 0x62] + }, + Vectors{ + input: [u8(0x1f), 0x70, 0x39, 0x1f, 0x6b, 0xa8, 0x58, 0x12, 0x94, 0x13, 0xbd, 0x80, 0x1b, + 0x12, 0xac, 0xbf, 0x66, 0x23, 0x62, 0x82, 0x5c, 0xa2, 0x50, 0x9c, 0x81, 0x87, 0x59, + 0xa, 0x2b, 0xe, 0x61, 0x72] + base: [u8(0xd3), 0xea, 0xd0, 0x7a, 0x0, 0x8, 0xf4, 0x45, 0x2, 0xd5, 0x80, 0x8b, 0xff, + 0xc8, 0x97, 0x9f, 0x25, 0xa8, 0x59, 0xd5, 0xad, 0xf4, 0x31, 0x2e, 0xa4, 0x87, 0x48, + 0x9c, 0x30, 0xe0, 0x1b, 0x3b] + expect: [u8(0xf8), 0x48, 0x2f, 0x2e, 0x9e, 0x58, 0xbb, 0x6, 0x7e, 0x86, 0xb2, 0x87, 0x24, + 0xb3, 0xc0, 0xa3, 0xbb, 0xb5, 0x7, 0x3e, 0x4c, 0x6a, 0xcd, 0x93, 0xdf, 0x54, 0x5e, + 0xff, 0xdb, 0xba, 0x50, 0x5f] + }, + Vectors{ + input: [u8(0x3a), 0x7a, 0xe6, 0xcf, 0x8b, 0x88, 0x9d, 0x2b, 0x7a, 0x60, 0xa4, 0x70, 0xad, + 0x6a, 0xd9, 0x99, 0x20, 0x6b, 0xf5, 0x7d, 0x90, 0x30, 0xdd, 0xf7, 0xf8, 0x68, 0xc, + 0x8b, 0x1a, 0x64, 0x5d, 0xaa] + base: [u8(0x4d), 0x25, 0x4c, 0x80, 0x83, 0xd8, 0x7f, 0x1a, 0x9b, 0x3e, 0xa7, 0x31, 0xef, + 0xcf, 0xf8, 0xa6, 0xf2, 0x31, 0x2d, 0x6f, 0xed, 0x68, 0xe, 0xf8, 0x29, 0x18, 0x51, + 0x61, 0xc8, 0xfc, 0x50, 0x60] + expect: [u8(0x47), 0xb3, 0x56, 0xd5, 0x81, 0x8d, 0xe8, 0xef, 0xac, 0x77, 0x4b, 0x71, 0x4c, + 0x42, 0xc4, 0x4b, 0xe6, 0x85, 0x23, 0xdd, 0x57, 0xdb, 0xd7, 0x39, 0x62, 0xd5, 0xa5, + 0x26, 0x31, 0x87, 0x62, 0x37] + }, + Vectors{ + input: [u8(0x20), 0x31, 0x61, 0xc3, 0x15, 0x9a, 0x87, 0x6a, 0x2b, 0xea, 0xec, 0x29, 0xd2, + 0x42, 0x7f, 0xb0, 0xc7, 0xc3, 0xd, 0x38, 0x2c, 0xd0, 0x13, 0xd2, 0x7c, 0xc3, 0xd3, + 0x93, 0xdb, 0xd, 0xaf, 0x6f] + base: [u8(0x6a), 0xb9, 0x5d, 0x1a, 0xbe, 0x68, 0xc0, 0x9b, 0x0, 0x5c, 0x3d, 0xb9, 0x4, + 0x2c, 0xc9, 0x1a, 0xc8, 0x49, 0xf7, 0xe9, 0x4a, 0x2a, 0x4a, 0x9b, 0x89, 0x36, 0x78, + 0x97, 0xb, 0x7b, 0x95, 0xbf] + expect: [u8(0x11), 0xed, 0xae, 0xdc, 0x95, 0xff, 0x78, 0xf5, 0x63, 0xa1, 0xc8, 0xf1, 0x55, + 0x91, 0xc0, 0x71, 0xde, 0xa0, 0x92, 0xb4, 0xd7, 0xec, 0xaa, 0xc8, 0xe0, 0x38, 0x7b, + 0x5a, 0x16, 0xc, 0x4e, 0x5d] + }, + Vectors{ + input: [u8(0x13), 0xd6, 0x54, 0x91, 0xfe, 0x75, 0xf2, 0x3, 0xa0, 0x8, 0xb4, 0x41, 0x5a, + 0xbc, 0x60, 0xd5, 0x32, 0xe6, 0x95, 0xdb, 0xd2, 0xf1, 0xe8, 0x3, 0xac, 0xcb, 0x34, + 0xb2, 0xb7, 0x2c, 0x3d, 0x70] + base: [u8(0x2e), 0x78, 0x4e, 0x4, 0xca, 0x0, 0x73, 0x33, 0x62, 0x56, 0xa8, 0x39, 0x25, + 0x5e, 0xd2, 0xf7, 0xd4, 0x79, 0x6a, 0x64, 0xcd, 0xc3, 0x7f, 0x1e, 0xb0, 0xe5, 0xc4, + 0xc8, 0xd1, 0xd1, 0xe0, 0xf5] + expect: [u8(0x56), 0x3e, 0x8c, 0x9a, 0xda, 0xa7, 0xd7, 0x31, 0x1, 0xb0, 0xf2, 0xea, 0xd3, + 0xca, 0xe1, 0xea, 0x5d, 0x8f, 0xcd, 0x5c, 0xd3, 0x60, 0x80, 0xbb, 0x8e, 0x6e, 0xc0, + 0x3d, 0x61, 0x45, 0x9, 0x17] + }, + Vectors{ + input: [u8(0x68), 0x6f, 0x7d, 0xa9, 0x3b, 0xf2, 0x68, 0xe5, 0x88, 0x6, 0x98, 0x31, 0xf0, + 0x47, 0x16, 0x3f, 0x33, 0x58, 0x99, 0x89, 0xd0, 0x82, 0x6e, 0x98, 0x8, 0xfb, 0x67, + 0x8e, 0xd5, 0x7e, 0x67, 0x49] + base: [u8(0x8b), 0x54, 0x9b, 0x2d, 0xf6, 0x42, 0xd3, 0xb2, 0x5f, 0xe8, 0x38, 0xf, 0x8c, + 0xc4, 0x37, 0x5f, 0x99, 0xb7, 0xbb, 0x4d, 0x27, 0x5f, 0x77, 0x9f, 0x3b, 0x7c, 0x81, + 0xb8, 0xa2, 0xbb, 0xc1, 0x29] + expect: [u8(0x1), 0x47, 0x69, 0x65, 0x42, 0x6b, 0x61, 0x71, 0x74, 0x9a, 0x8a, 0xdd, 0x92, + 0x35, 0x2, 0x5c, 0xe5, 0xf5, 0x57, 0xfe, 0x40, 0x9, 0xf7, 0x39, 0x30, 0x44, 0xeb, 0xbb, + 0x8a, 0xe9, 0x52, 0x79] + }, + Vectors{ + input: [u8(0x82), 0xd6, 0x1c, 0xce, 0xdc, 0x80, 0x6a, 0x60, 0x60, 0xa3, 0x34, 0x9a, 0x5e, + 0x87, 0xcb, 0xc7, 0xac, 0x11, 0x5e, 0x4f, 0x87, 0x77, 0x62, 0x50, 0xae, 0x25, 0x60, + 0x98, 0xa7, 0xc4, 0x49, 0x59] + base: [u8(0x8b), 0x6b, 0x9d, 0x8, 0xf6, 0x1f, 0xc9, 0x1f, 0xe8, 0xb3, 0x29, 0x53, 0xc4, + 0x23, 0x40, 0xf0, 0x7, 0xb5, 0x71, 0xdc, 0xb0, 0xa5, 0x6d, 0x10, 0x72, 0x4e, 0xce, + 0xf9, 0x95, 0xc, 0xfb, 0x25] + expect: [u8(0x9c), 0x49, 0x94, 0x1f, 0x9c, 0x4f, 0x18, 0x71, 0xfa, 0x40, 0x91, 0xfe, 0xd7, + 0x16, 0xd3, 0x49, 0x99, 0xc9, 0x52, 0x34, 0xed, 0xf2, 0xfd, 0xfb, 0xa6, 0xd1, 0x4a, + 0x5a, 0xfe, 0x9e, 0x5, 0x58] + }, + Vectors{ + input: [u8(0x7d), 0xc7, 0x64, 0x4, 0x83, 0x13, 0x97, 0xd5, 0x88, 0x4f, 0xdf, 0x6f, 0x97, + 0xe1, 0x74, 0x4c, 0x9e, 0xb1, 0x18, 0xa3, 0x1a, 0x7b, 0x23, 0xf8, 0xd7, 0x9f, 0x48, + 0xce, 0x9c, 0xad, 0x15, 0x4b] + base: [u8(0x1a), 0xcd, 0x29, 0x27, 0x84, 0xf4, 0x79, 0x19, 0xd4, 0x55, 0xf8, 0x87, 0x44, + 0x83, 0x58, 0x61, 0xb, 0xb9, 0x45, 0x96, 0x70, 0xeb, 0x99, 0xde, 0xe4, 0x60, 0x5, 0xf6, + 0x89, 0xca, 0x5f, 0xb6] + expect: [u8(0x0), 0xf4, 0x3c, 0x2, 0x2e, 0x94, 0xea, 0x38, 0x19, 0xb0, 0x36, 0xae, 0x2b, + 0x36, 0xb2, 0xa7, 0x61, 0x36, 0xaf, 0x62, 0x8a, 0x75, 0x1f, 0xe5, 0xd0, 0x1e, 0x3, + 0xd, 0x44, 0x25, 0x88, 0x59] + }, + Vectors{ + input: [u8(0xfb), 0xc4, 0x51, 0x1d, 0x23, 0xa6, 0x82, 0xae, 0x4e, 0xfd, 0x8, 0xc8, 0x17, + 0x9c, 0x1c, 0x6, 0x7f, 0x9c, 0x8b, 0xe7, 0x9b, 0xbc, 0x4e, 0xff, 0x5c, 0xe2, 0x96, + 0xc6, 0xbc, 0x1f, 0xf4, 0x45] + base: [u8(0x55), 0xca, 0xff, 0x21, 0x81, 0xf2, 0x13, 0x6b, 0xe, 0xd0, 0xe1, 0xe2, 0x99, + 0x44, 0x48, 0xe1, 0x6c, 0xc9, 0x70, 0x64, 0x6a, 0x98, 0x3d, 0x14, 0xd, 0xc4, 0xea, + 0xb3, 0xd9, 0x4c, 0x28, 0x4e] + expect: [u8(0xae), 0x39, 0xd8, 0x16, 0x53, 0x23, 0x45, 0x79, 0x4d, 0x26, 0x91, 0xe0, 0x80, + 0x1c, 0xaa, 0x52, 0x5f, 0xc3, 0x63, 0x4d, 0x40, 0x2c, 0xe9, 0x58, 0xb, 0x33, 0x38, + 0xb4, 0x6f, 0x8b, 0xb9, 0x72] + }, + Vectors{ + input: [u8(0x4e), 0x6, 0xc, 0xe1, 0xc, 0xeb, 0xf0, 0x95, 0x9, 0x87, 0x16, 0xc8, 0x66, + 0x19, 0xeb, 0x9f, 0x7d, 0xf6, 0x65, 0x24, 0x69, 0x8b, 0xa7, 0x98, 0x8c, 0x3b, 0x90, + 0x95, 0xd9, 0xf5, 0x1, 0x34] + base: [u8(0x57), 0x73, 0x3f, 0x2d, 0x86, 0x96, 0x90, 0xd0, 0xd2, 0xed, 0xae, 0xc9, 0x52, + 0x3d, 0xaa, 0x2d, 0xa9, 0x54, 0x45, 0xf4, 0x4f, 0x57, 0x83, 0xc1, 0xfa, 0xec, 0x6c, + 0x3a, 0x98, 0x28, 0x18, 0xf3] + expect: [u8(0xa6), 0x1e, 0x74, 0x55, 0x2c, 0xce, 0x75, 0xf5, 0xe9, 0x72, 0xe4, 0x24, 0xf2, + 0xcc, 0xb0, 0x9c, 0x83, 0xbc, 0x1b, 0x67, 0x1, 0x47, 0x48, 0xf0, 0x2c, 0x37, 0x1a, + 0x20, 0x9e, 0xf2, 0xfb, 0x2c] + }, + Vectors{ + input: [u8(0x5c), 0x49, 0x2c, 0xba, 0x2c, 0xc8, 0x92, 0x48, 0x8a, 0x9c, 0xeb, 0x91, 0x86, + 0xc2, 0xaa, 0xc2, 0x2f, 0x1, 0x5b, 0xf3, 0xef, 0x8d, 0x3e, 0xcc, 0x9c, 0x41, 0x76, + 0x97, 0x62, 0x61, 0xaa, 0xb1] + base: [u8(0x67), 0x97, 0xc2, 0xe7, 0xdc, 0x92, 0xcc, 0xbe, 0x7c, 0x5, 0x6b, 0xec, 0x35, + 0xa, 0xb6, 0xd3, 0xbd, 0x2a, 0x2c, 0x6b, 0xc5, 0xa8, 0x7, 0xbb, 0xca, 0xe1, 0xf6, 0xc2, + 0xaf, 0x80, 0x36, 0x44] + expect: [u8(0xfc), 0xf3, 0x7, 0xdf, 0xbc, 0x19, 0x2, 0xb, 0x28, 0xa6, 0x61, 0x8c, 0x6c, + 0x62, 0x2f, 0x31, 0x7e, 0x45, 0x96, 0x7d, 0xac, 0xf4, 0xae, 0x4a, 0xa, 0x69, 0x9a, + 0x10, 0x76, 0x9f, 0xde, 0x14] + }, + Vectors{ + input: [u8(0xea), 0x33, 0x34, 0x92, 0x96, 0x5, 0x5a, 0x4e, 0x8b, 0x19, 0x2e, 0x3c, 0x23, + 0xc5, 0xf4, 0xc8, 0x44, 0x28, 0x2a, 0x3b, 0xfc, 0x19, 0xec, 0xc9, 0xdc, 0x64, 0x6a, + 0x42, 0xc3, 0x8d, 0xc2, 0x48] + base: [u8(0x2c), 0x75, 0xd8, 0x51, 0x42, 0xec, 0xad, 0x3e, 0x69, 0x44, 0x70, 0x4, 0x54, + 0xc, 0x1c, 0x23, 0x54, 0x8f, 0xc8, 0xf4, 0x86, 0x25, 0x1b, 0x8a, 0x19, 0x46, 0x3f, + 0x3d, 0xf6, 0xf8, 0xac, 0x61] + expect: [u8(0x5d), 0xca, 0xb6, 0x89, 0x73, 0xf9, 0x5b, 0xd3, 0xae, 0x4b, 0x34, 0xfa, 0xb9, + 0x49, 0xfb, 0x7f, 0xb1, 0x5a, 0xf1, 0xd8, 0xca, 0xe2, 0x8c, 0xd6, 0x99, 0xf9, 0xc1, + 0xaa, 0x33, 0x37, 0x34, 0x2f] + }, + Vectors{ + input: [u8(0x4f), 0x29, 0x79, 0xb1, 0xec, 0x86, 0x19, 0xe4, 0x5c, 0xa, 0xb, 0x2b, 0x52, + 0x9, 0x34, 0x54, 0x1a, 0xb9, 0x44, 0x7, 0xb6, 0x4d, 0x19, 0xa, 0x76, 0xf3, 0x23, 0x14, + 0xef, 0xe1, 0x84, 0xe7] + base: [u8(0xf7), 0xca, 0xe1, 0x8d, 0x8d, 0x36, 0xa7, 0xf5, 0x61, 0x17, 0xb8, 0xb7, 0xe, + 0x25, 0x52, 0x27, 0x7f, 0xfc, 0x99, 0xdf, 0x87, 0x56, 0xb5, 0xe1, 0x38, 0xbf, 0x63, + 0x68, 0xbc, 0x87, 0xf7, 0x4c] + expect: [u8(0xe4), 0xe6, 0x34, 0xeb, 0xb4, 0xfb, 0x66, 0x4f, 0xe8, 0xb2, 0xcf, 0xa1, 0x61, + 0x5f, 0x0, 0xe6, 0x46, 0x6f, 0xff, 0x73, 0x2c, 0xe1, 0xf8, 0xa0, 0xc8, 0xd2, 0x72, + 0x74, 0x31, 0xd1, 0x6f, 0x14] + }, + Vectors{ + input: [u8(0xf5), 0xd8, 0xa9, 0x27, 0x90, 0x1d, 0x4f, 0xa4, 0x24, 0x90, 0x86, 0xb7, 0xff, + 0xec, 0x24, 0xf5, 0x29, 0x7d, 0x80, 0x11, 0x8e, 0x4a, 0xc9, 0xd3, 0xfc, 0x9a, 0x82, + 0x37, 0x95, 0x1e, 0x3b, 0x7f] + base: [u8(0x3c), 0x23, 0x5e, 0xdc, 0x2, 0xf9, 0x11, 0x56, 0x41, 0xdb, 0xf5, 0x16, 0xd5, + 0xde, 0x8a, 0x73, 0x5d, 0x6e, 0x53, 0xe2, 0x2a, 0xa2, 0xac, 0x14, 0x36, 0x56, 0x4, + 0x5f, 0xf2, 0xe9, 0x52, 0x49] + expect: [u8(0xab), 0x95, 0x15, 0xab, 0x14, 0xaf, 0x9d, 0x27, 0xe, 0x1d, 0xae, 0xc, 0x56, + 0x80, 0xcb, 0xc8, 0x88, 0xb, 0xd8, 0xa8, 0xe7, 0xeb, 0x67, 0xb4, 0xda, 0x42, 0xa6, + 0x61, 0x96, 0x1e, 0xfc, 0xb] + }, +] + +// Please be aware, this is long running times test, its loop until 1.000.000 times. +// so, please be patient. See the detail of the type 2 test from rfc +// see at https://datatracker.ietf.org/doc/html/rfc7748#section-5.2 +// +// Currently, this test was disabled due to its takes long time to complete, +// please uncomment it if you need run the test. +// On my test machine, its pass successfully in 2225590.282 ms +// ```v +// ... (previous line) +// ... +// start i: 999995 +// start i: 999996 +// start i: 999997 +// start i: 999998 +// start i: 999999 +// +// OK 2225590.282 ms 3 asserts | curve25519.test_x25519_after_iteration_from_rfc_vector_type2() +// Summary for running V tests in "curve25519_test.v": 3 passed, 3 total. Elapsed time: 2225590 ms. +// ``` +/* +fn test_x25519_after_iteration_from_rfc_vector_type2() ! { + iteration1 := hex.decode('422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079')! + iteration1000 := hex.decode('684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51') ! + iteration1000000 := hex.decode('7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424') ! + + // Initially, set k and u to be the following values + key := '0900000000000000000000000000000000000000000000000000000000000000' + mut k := hex.decode(key)! + mut u := k.clone() + mut r := []u8{len: 32} + + // For each iteration, set k to be the result of calling the function and u + // to be the old value of k. The final result is the value left in k. + // + for i in 0..1000000 { + println("start i: $i") + tmp_k := k.clone() + r = x25519(mut k, u) ! + unsafe {u = tmp_k} + unsafe {k = r} + if i == 0 { + assert k == iteration1 + } else if i == 999 { + assert k == iteration1000 + } else if i == 999999 { + assert k == iteration1000000 + } + + } +} +*/ diff --git a/vlib/x/crypto/curve25519/examples/shared_sec_with_custom_derivator.v b/vlib/x/crypto/curve25519/examples/shared_sec_with_custom_derivator.v new file mode 100644 index 0000000000..dc115959f4 --- /dev/null +++ b/vlib/x/crypto/curve25519/examples/shared_sec_with_custom_derivator.v @@ -0,0 +1,39 @@ +// Copyright © 2025 blackshirt. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// +// This code snippet give us an example on how to use this `curve25519` module +// on creating shared secret with custom derivation function +import crypto.sha512 +import encoding.hex +import x.crypto.curve25519 + +// Custom SHA384 based derivator +struct Sha384Derivator { +} + +// derives a new shared secret by hashing the sec bytes with sha384 hash +fn (sd Sha384Derivator) derive(sec []u8, opt curve25519.DeriveOpts) ![]u8 { + return sha512.sum384(sec) +} + +fn main() { + // Sample of randomly generated 32 bytes length of the key as a Alice key + a_pvkey := hex.decode('844f744729d93369147d48d82d18b979f0b4be5f27b4b21c68fd42804575fe29')! + mut alice_pvkey := curve25519.PrivateKey.new_from_seed(a_pvkey)! + + // For example, Alice receives Bob's public key + b_pubkey := hex.decode('7f869b403ddb1f5708bc2f8246ae78fa53ea304af585d5bb14fea3aafe5315c7')! + bob_pubkey := curve25519.PublicKey.new_from_bytes(b_pubkey)! + + opt := curve25519.SharedOpts{ + should_derive: true + derivator: Sha384Derivator{} + } + shared_sec := curve25519.derive_shared_secret(mut alice_pvkey, bob_pubkey, opt)! + + // shared_sec now contains sha384 digest form, derived from sec bytes supplied + // shared_sec.hex(): 88d648a1c5437e2807ed48aaea7ae3190ffe4b2b74008cd2c1ace9bddf28afe50b9a0c9e06dd50bbf73e0203bc1775dc + dump(shared_sec.hex()) + dump(shared_sec.len) // shared_sec.len: 48 +} diff --git a/vlib/x/crypto/curve25519/examples/shared_sec_with_raw_bytes.v b/vlib/x/crypto/curve25519/examples/shared_sec_with_raw_bytes.v new file mode 100644 index 0000000000..f3ce8834aa --- /dev/null +++ b/vlib/x/crypto/curve25519/examples/shared_sec_with_raw_bytes.v @@ -0,0 +1,23 @@ +// Copyright © 2025 blackshirt. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// +// This code snippet give us an example on how to use this `curve25519` module +// on creating shared secret through `x25519` function thats accepts raw bytes +import encoding.hex +import x.crypto.curve25519 + +fn main() { + // Sample of randomly generated 32 bytes length of the key as a Alice key + a_privkey := '844f744729d93369147d48d82d18b979f0b4be5f27b4b21c68fd42804575fe29' + mut alice_privkey := hex.decode(a_privkey)! + + // For example, Alice receives Bob's public key + b_pubkey := '7f869b403ddb1f5708bc2f8246ae78fa53ea304af585d5bb14fea3aafe5315c7' + bob_pubkey := hex.decode(b_pubkey)! + + // Then, Alice can generated shared secret to be shared with Bob + shared_sec := curve25519.x25519(mut alice_privkey, bob_pubkey)! + dump(shared_sec.hex()) // shared_sec.hex(): dfa1c80d488e3de14389a852ae8f4b2f6831f8e5cea80694c7ea104ffe694858 + dump(shared_sec.len) // shared_sec.len: 32 +} diff --git a/vlib/x/crypto/curve25519/usage_test.v b/vlib/x/crypto/curve25519/usage_test.v new file mode 100644 index 0000000000..ed6c5c70c3 --- /dev/null +++ b/vlib/x/crypto/curve25519/usage_test.v @@ -0,0 +1,30 @@ +// Copyright © 2025 blackshirt. +// Use of this source code is governed by an MIT license +// that can be found in the LICENSE file. +// +// Usage example of the `curve25519` module +import x.crypto.curve25519 + +fn test_curve25519_shared_secret_key_exchange() ! { + // Alice generates a private key + mut alice_pvkey := curve25519.PrivateKey.new()! + // Alice's PublicKey to be shared with Bob + alice_pbkey := alice_pvkey.public_key()! + + // The other peer, Bob, has a different private key + mut bob_pvkey := curve25519.PrivateKey.new()! + // Bob's public key to be shared + bob_pbkey := bob_pvkey.public_key()! + + // Let the two peers exchange their respective public keys + // + // Alice derives the shared secret, using her own private key, and the public key that Bob shared + alice_shared_sec := curve25519.derive_shared_secret(mut alice_pvkey, bob_pbkey)! + + // Bob derives the shared secret, using his own private key, and the public key that Alice shared + bob_shared_sec := curve25519.derive_shared_secret(mut bob_pvkey, alice_pbkey)! + + // the two shared secrets (derived by Alice, and derived by Bob), should be the same + // + assert alice_shared_sec == bob_shared_sec +}