strings: add hamming_distance/jaro_similarity/jaro_winkler_similarity functions (#22701)

This commit is contained in:
kbkpbot 2024-10-31 19:34:37 +08:00 committed by GitHub
parent c32c2d732a
commit 86470abc77
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 191 additions and 0 deletions

View file

@ -12,6 +12,30 @@ fn min(a u16, b u16, c u16) u16 {
return m return m
} }
@[inline]
fn max2(a int, b int) int {
if a < b {
return b
}
return a
}
@[inline]
fn min2(a int, b int) int {
if a < b {
return a
}
return b
}
@[inline]
fn abs2(a int, b int) int {
if a < b {
return b - a
}
return a - b
}
// levenshtein_distance uses the Levenshtein Distance algorithm to calculate // levenshtein_distance uses the Levenshtein Distance algorithm to calculate
// the distance between between two strings `a` and `b` (lower is closer). // the distance between between two strings `a` and `b` (lower is closer).
@[direct_array_access] @[direct_array_access]
@ -85,3 +109,121 @@ pub fn dice_coefficient(s1 string, s2 string) f32 {
} }
return (2.0 * f32(intersection_size)) / (f32(a.len) + f32(b.len) - 2) return (2.0 * f32(intersection_size)) / (f32(a.len) + f32(b.len) - 2)
} }
// hamming_distance uses the Hamming Distance algorithm to calculate
// the distance between two strings `a` and `b` (lower is closer).
@[direct_array_access]
pub fn hamming_distance(a string, b string) int {
if a.len == 0 && b.len == 0 {
return 0
}
mut match_len := min2(a.len, b.len)
mut diff_count := abs2(a.len, b.len)
for i in 0 .. match_len {
if a[i] != b[i] {
diff_count++
}
}
return diff_count
}
// hamming_similarity uses the Hamming Distance algorithm to calculate
// the distance between two strings `a` and `b`.
// It returns a coefficient between 0.0 (not similar) and 1.0 (exact match).
pub fn hamming_similarity(a string, b string) f32 {
l := max2(a.len, b.len)
if l == 0 {
// Both are empty strings, should return 1.0
return 1.0
}
d := hamming_distance(a, b)
return 1.00 - f32(d) / f32(l)
}
// jaro_similarity uses the Jaro Distance algorithm to calculate
// the distance between two strings `a` and `b`.
// It returns a coefficient between 0.0 (not similar) and 1.0 (exact match).
@[direct_array_access]
pub fn jaro_similarity(a string, b string) f64 {
a_len := a.len
b_len := b.len
if a_len == 0 && b_len == 0 {
// Both are empty strings, should return 1.0
return 1.0
}
if a_len == 0 || b_len == 0 {
return 0
}
// Maximum distance upto which matching is allowed
match_distance := max2(a_len, b_len) / 2 - 1
mut a_matches := []bool{len: a_len}
mut b_matches := []bool{len: b_len}
mut matches := 0
mut transpositions := 0.0
// Traverse through the first string
for i in 0 .. a_len {
start := max2(0, i - match_distance)
end := min2(b_len, i + match_distance + 1)
for k in start .. end {
// If there is a match
if b_matches[k] {
continue
}
if a[i] != b[k] {
continue
}
a_matches[i] = true
b_matches[k] = true
matches++
break
}
}
// If there is no match
if matches == 0 {
return 0
}
mut k := 0
// Count number of occurrences where two characters match but
// there is a third matched character in between the indices
for i in 0 .. a_len {
if !a_matches[i] {
continue
}
// Find the next matched character in second string
for !b_matches[k] {
k++
}
if a[i] != b[k] {
transpositions++
}
k++
}
transpositions /= 2
return (matches / f64(a_len) + matches / f64(b_len) + (matches - transpositions) / matches) / 3
}
// jaro_winkler_similarity uses the Jaro Winkler Distance algorithm to calculate
// the distance between two strings `a` and `b`.
// It returns a coefficient between 0.0 (not similar) and 1.0 (exact match).
// The scaling factor(`p=0.1`) in Jaro-Winkler gives higher weight to prefix
// similarities, making it especially effective for cases where slight misspellings
// or prefixes are common.
@[direct_array_access]
pub fn jaro_winkler_similarity(a string, b string) f64 {
// Maximum of 4 characters are allowed in prefix
mut lmax := min2(4, min2(a.len, b.len))
mut l := 0
for i in 0 .. lmax {
if a[i] == b[i] {
l++
}
}
js := jaro_similarity(a, b)
// select a multiplier (Winkler suggested p=0.1) for the relative importance of the prefix for the word similarity
p := 0.1
ws := js + f64(l) * p * (1 - js)
return ws
}

View file

@ -12,3 +12,52 @@ fn test_levenshtein_distance() {
assert strings.levenshtein_distance('flomax', 'volmax') == 3 assert strings.levenshtein_distance('flomax', 'volmax') == 3
assert strings.levenshtein_distance('ab', 'cd') == 2 assert strings.levenshtein_distance('ab', 'cd') == 2
} }
fn test_hamming_distance() {
assert strings.hamming_distance('', '') == 0
assert strings.hamming_distance('one', 'one') == 0
assert strings.hamming_distance('', 'two') == 3
assert strings.hamming_distance('three', '') == 5
assert strings.hamming_distance('bananna', '') == 7
assert strings.hamming_distance('cats', 'hats') == 1
assert strings.hamming_distance('hugs', 'shrugs') == 6
assert strings.hamming_distance('broom', 'shroom') == 5
assert strings.hamming_distance('flomax', 'volmax') == 3
assert strings.hamming_distance('ab', 'cd') == 2
}
fn test_hamming_similarity() {
assert strings.hamming_similarity('', '') == 1.0
assert strings.hamming_similarity('one', 'one') == 1.0
assert strings.hamming_similarity('', 'two') == 0
assert strings.hamming_similarity('three', '') == 0
assert strings.hamming_similarity('bananna', '') == 0
assert strings.hamming_similarity('cats', 'hats') == 0.75
assert strings.hamming_similarity('hugs', 'shrugs') == 0
assert strings.hamming_similarity('broom', 'shroom') == 0.1666666865348816
assert strings.hamming_similarity('flomax', 'volmax') == 0.5
assert strings.hamming_similarity('ab', 'cd') == 0
}
fn test_jaro_similarity() {
assert strings.jaro_similarity('', '') == 1
assert strings.jaro_similarity('one', 'one') == 1
assert strings.jaro_similarity('', 'two') == 0
assert strings.jaro_similarity('three', '') == 0
assert strings.jaro_similarity('bananna', '') == 0
assert strings.jaro_similarity('MARTHA', 'MARHTA') == 0.9444444444444445
assert strings.jaro_similarity('DIXON', 'DICKSONX') == 0.7666666666666666
assert strings.jaro_similarity('JELLYFISH', 'SMELLYFISH') == 0.8962962962962964
}
fn test_jaro_winkler_similarity() {
assert strings.jaro_winkler_similarity('', '') == 1
assert strings.jaro_winkler_similarity('one', 'one') == 1
assert strings.jaro_winkler_similarity('', 'two') == 0
assert strings.jaro_winkler_similarity('three', '') == 0
assert strings.jaro_winkler_similarity('bananna', '') == 0
assert strings.jaro_winkler_similarity('accomodate', 'accommodate') == 0.9818181818181818
assert strings.jaro_winkler_similarity('accomodate', 'accompanist') == 0.8672727272727273
assert strings.jaro_winkler_similarity('untill', 'huntsville') == 0.8666666666666667
assert strings.jaro_winkler_similarity('wich', 'wichita') == 0.9142857142857143
}