gg: add Context.draw_cubic_bezier_recursive/2 and Context.draw_cubic_bezier_recursive_scalar/9 (#21749)

This commit is contained in:
Delyan Angelov 2024-06-28 08:30:45 +03:00 committed by GitHub
parent fccd7cd02e
commit 4c42fe3420
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 72 additions and 3 deletions

View file

@ -7,7 +7,8 @@ const points = [f32(200.0), 200.0, 200.0, 100.0, 400.0, 100.0, 400.0, 300.0]
struct App {
mut:
gg &gg.Context = unsafe { nil }
gg &gg.Context = unsafe { nil }
steps int = 30
}
fn main() {
@ -23,8 +24,20 @@ fn main() {
app.gg.run()
}
fn (mut app App) change(delta int) {
app.steps += delta
println('app.steps: ${app.steps}')
}
fn frame(mut app App) {
app.gg.begin()
app.gg.draw_cubic_bezier(points, gx.blue)
app.gg.draw_cubic_bezier_in_steps(points, u32(app.steps), gx.blue)
app.gg.draw_cubic_bezier_recursive(points, gx.rgba(255, 50, 50, 150))
app.gg.end()
if app.gg.pressed_keys[int(gg.KeyCode.down)] {
app.change(-1)
}
if app.gg.pressed_keys[int(gg.KeyCode.up)] {
app.change(1)
}
}

56
vlib/gg/bezier.c.v Normal file
View file

@ -0,0 +1,56 @@
module gg
import math
import sokol.sgl
// draw_cubic_bezier_recursive draws a cubic Bézier curve, also known as a spline, from four points,
// where the first and the last points, *will* be part of the curve, and the middle 2 points are control ones.
// Unlike `draw_cubic_bezier_in_steps`, this method does not use a fixed number of steps for the whole curve,
// but tries to produce more tesselation points dynamically for the curvier parts.
@[direct_array_access]
pub fn (ctx &Context) draw_cubic_bezier_recursive(points []f32, c Color) {
if points.len < 8 {
return
}
ctx.draw_cubic_bezier_recursive_scalar(points[0], points[1], points[2], points[3],
points[4], points[5], points[6], points[7], c)
}
// draw_cubic_bezier_recursive_scalar is the same as `draw_cubic_bezier_recursive`, except that the `points` are given
// as indiviual x,y f32 scalar parameters, and not in a single dynamic array parameter.
pub fn (ctx &Context) draw_cubic_bezier_recursive_scalar(x1 f32, y1 f32, x2 f32, y2 f32, x3 f32, y3 f32, x4 f32, y4 f32, c Color) {
if c.a == 0 {
return
}
if c.a != 255 {
sgl.load_pipeline(ctx.pipeline.alpha)
}
sgl.c4b(c.r, c.g, c.b, c.a)
sgl.begin_line_strip()
sgl.v2f(x1 * ctx.scale, y1 * ctx.scale)
ctx.cubic_bezier_rec(x1, y1, x2, y2, x3, y3, x4, y4, 0)
sgl.v2f(x4 * ctx.scale, y4 * ctx.scale)
sgl.end()
}
// based on nsvg__flattenCubicBez, from https://github.com/memononen/nanosvg/ :
fn (ctx &Context) cubic_bezier_rec(x1 f32, y1 f32, x2 f32, y2 f32, x3 f32, y3 f32, x4 f32, y4 f32, level int) {
if level > 10 {
return
}
dx, dy := x4 - x1, y4 - y1
d2 := math.abs((x2 - x4) * dy - (y2 - y4) * dx)
d3 := math.abs((x3 - x4) * dy - (y3 - y4) * dx)
if (d2 + d3) * (d2 + d3) < 0.25 * (dx * dx + dy * dy) {
sgl.v2f(x4 * ctx.scale, y4 * ctx.scale)
return
}
x12, y12 := 0.5 * (x1 + x2), 0.5 * (y1 + y2)
x23, y23 := 0.5 * (x2 + x3), 0.5 * (y2 + y3)
x34, y34 := 0.5 * (x3 + x4), 0.5 * (y3 + y4)
x234, y234 := 0.5 * (x23 + x34), 0.5 * (y23 + y34)
x123, y123 := 0.5 * (x12 + x23), 0.5 * (y12 + y23)
x1234, y1234 := 0.5 * (x123 + x234), 0.5 * (y123 + y234)
ctx.cubic_bezier_rec(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1)
ctx.cubic_bezier_rec(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1)
}

View file

@ -964,7 +964,7 @@ pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) {
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) {
if steps <= 0 || points.len != 8 {
if steps <= 0 || steps >= 20000 || points.len != 8 {
return
}
if c.a != 255 {